The Role of Spectroscopy in Probing the Physics of Reionisation

Richard Ellis (ESO/UCL)

European Research Council

8.8

With Dan Stark (Arizona), Adi Zitrin (Caltech), Tucker Jones (Hawaii)

Early Growth of Galaxies

11.9

8:8

Sesto January 14th 2016

9.5

Planck CMB: Shorter & Later Reionization Era?

Planck Consortium argue the WMAP τ , derived largely from TE/EE (polarization) data, is less convincing than the superior TT data from Planck whose degeneracy with the amplitude A_s can now be broken via CMB lensing constraints.

Does it Matter? Star Formation History

A change of $\Delta z \sim 1.7$ in instantanous redshift of reionization makes a big difference to the role of galaxies since their numbers decline very rapidly for z > 6.

Census of galaxies now reaches to z~10 utilizing both blank fields and lensed surveys.

Planck & HST: Reionization over 6 < z < 12

With various assumptions ($f_{esc} = 0.2$, ξ_{ion} consistent with UV slope $\beta = -2$, a LF extending to M_{UV} =-13) the HST-observed galaxy population can match Planck data with reionization largely contained with 10 < z < 6

So how can we verify these assumptions? – SPECTROSCOPY!

Robertson et al (2015), see also Bouwens+(2015), Mitra+(2015)

$\mbox{Ly}\alpha$ Emission as a Probe of Reionization

Up to 6-7% of young galaxy light could emerge in Ly α :

 But resonant scattering by neutral gas reduces its visibility

 In a significantly neutral IGM, galaxy must lie in an ionized bubble in order for Lyα to escape

• Expect a sudden drop in the fraction of galaxies revealing line emission as enter the neutral era

• Caveats: dust, outflows etc

Miralda-Escudé (1998), Santos (2004), Dijkstra+ (2007), McQuinn+ (2007)

Targets: HST GOODS & CANDELS-UDS m_{AB}<27.5 DEIMOS 3<z<6; LRIS-R 6<z<7; MOSFIRE z>7 351 B + 201 V + 89 i + 40 z + 5 Y drops = 686 spectra VLT/FORS2 retro-selected: 195 spectra (Vanzella et al)

Stark et al (2009, 2010, 2011, 2013, 2015 in prep), Schenker et al (2012, 2014)

Confirmation: Lyα fraction declines sharply for z > 6

Schenker et al (2014) – Keck MOSFIRE + UDF, CLASH 7<z<8.2

also Treu et al (2013) – Keck MOSFIRE + BoRG z~8 Finkelstein et al (2013) – Keck MOSFIRE + CANDELS z > 7 Tilvi et al (2014) – Keck MOSFIRE 7<z<8.2 Pentericci et al (2014) – VLT FORS 6<z<7.3 Schmidt et al (2015) – WFC3 grism z>7

Can this rapid decline in Ly α be understood?

Δx(HI) ~ 0.3-0.5 in 200 Myr? Very rapid for WMAP, less so for Planck Choudhury et al (2015), Mesinger et al (2015)

Other explanations:

- Low z contaminants: requires unreasonably high fraction (>50%)
- Cosmic variance: non-uniform X(Lyα, z) across fields
- Reduced Lyα velocity offset: reduces rapidity of reionization

A New Development !

Most z > 7 galaxies to date were selected primarily on the basis of a strong Lyman continuum drop and a blue rest-frame UV continuum. As we have seen, few show Ly α

But for 7 < z < 9 [O III]/H β pollutes the 4.5µm IRAC band. Selecting sources with a strong 4.5µm excess targets intense line emitters

4 such luminous objects (H~25) located in CANDELS fields

Roberts-Borsani et al (2015)

Redshift Record May 2015: EGS-zs8-1 at z=7.73

- Luminous LBG in CANDELS fields at H=25.0 with 4.5µm excess
- Robust spectrum in only 2 hours with MOSFIRE!
- $Z_{phot} = 7.92 \pm 0.36$; $Z_{spec} = 7.73$; Ly α EW ≈ 21 Å

Oesch et al (2015)

Redshift Record July 2015: EGSY8p7 at z=8.68

- Luminous LBG in CANDELS fields at H=25.3 with 4.5µm excess
- Good spectrum in only 4.3 hours with MOSFIRE
- $Z_{phot} = 8.57 \pm 0.3$; $Z_{spec} = 8.68$; Lya EW ~ 30 Å

Now confirm EGS-z38-2 z(Lyα)=7.477, COSMOS z(Lyα)=7.15 (Stark et al (2016)!

Zitrin et al (2015)

Sources with extremely strong ionizing radiation?

TABLE 2

A complete list of the resulting $z \ge 7$ sources identified after applying our selection

ID	R.A.	Dec	$m_{AB}{}^{\mathrm{a}}$	[3.6]- $[4.5]$	${z_{phot}}^{\mathrm{b}}$	$Y_{105} - J_{125}^{\rm c}$
COSY-0237620370 EGS-zs8-1 EGS-zs8-2 EGSY-2008532660	$\begin{array}{c} 10:00:23.76\\ 14:20:34.89\\ 14:20:12.09\\ 14:20:08.50\end{array}$	$\begin{array}{c} 02{:}20{:}37{.}00\\ 53{:}00{:}15{.}35\\ 53{:}00{:}26{.}97\\ 52{:}53{:}26{.}60\end{array}$	25.06 ± 0.06 25.03 ± 0.05 25.12 ± 0.05 25.26 ± 0.09	1.03 ± 0.15 0.53 ± 0.09 0.96 ± 0.17 0.76 ± 0.14	$7.14 \pm \substack{0.12\\0.12}\\7.92 \pm \substack{0.36\\0.36}\\7.61 \pm \substack{0.26\\0.25}\\8.57 \substack{+0.22\\-0.43}$	-0.13 ± 0.66 1.00 ± 0.60 0.66 ± 0.37

4/4 sources with z_{phot} > 7.5 with 4.5µm excess show prominent Lya ! EGSY8p7 at z=8.68 shows Lya where IGM is expected to be ~60% neutral At lower redshift such luminous galaxies are <u>less</u> likely to have strong Lya

How can this be???

They could be a different class of galaxy with unusually strong radiation fields which have created early ionized bubbles. Conceivably such luminous early galaxies contain AGN or unusually hot stellar populations?

Did Galaxies Reionize Universe?

Ionization rate

$$\dot{n}_{\rm ion} = f_{\rm esc} \xi_{\rm ion} \rho_{\rm UV}$$

Recombination time

 $t_{\rm rec} = [C_{\rm H\,{\scriptscriptstyle II}} \alpha_{\rm B}(T)(1 + Y_{\rm p}/4X_{\rm p})\langle n_{\rm H}\rangle(1 + z)^3]^{-1}$

Key observables:

1. Integrated abundance of high z star-forming galaxies especially contribution of low luminosity sources : ρ_{UV}

2. Nature of the stellar populations in distant galaxies which determines the rate of ionizing photons: ξ_{ion}

3. Fraction of ionizing photons that escape: fesc

4. Optical depth of electron scattering to CMB: T

Ionising to UV Photon Ratio ξ_{ion}

UV continuum slope β measured using HST colours distinguishes between: (i) metal-poor galaxies with steep UV continua, i.e. large ξ_{ion} (ii) metal-enriched systems with flatter spectral slopes, i.e. lower ξ_{ion}

 $z\sim7-8$ galaxies show a uniform slope β=-2 consistent with mature (>100 Myr) enriched stars and

log ξ_{ion} ~25.1 (cgs)

but ambiguities remain depending on composition, dust and IMF.

Dunlop et al (2013), Roberston et al (2013)

Do We Understand Stellar Evolution Well Enough?

Given the UV continuum slope @ 1500 A can we predict the Lyman continuum flux?

Degeneracy in spectral energy distributions

Imponderables include: stellar initial mass function, rotation in hot MS stars, effect of binaries etc...all have significant effect on ξ_{ion}

Stanway et al (2015)

More Robust Diagnostics with UV Metal Lines

Spectra of lensed 10^{6-9} M_{\odot} z~2-3 galaxies similar to those at z~7

Key lines include:

- CIV 1548 Å 48 eV
- O III] 1664 Å 35 eV
- CIII] 1909 Å 29 eV

These are prominent in metal-poor systems reflecting harder ionizing spectra so valuable indicators of ξ_{ion} in early stellar populations

Stark et al (2014)

Important UV Emission Lines

Two grids of photoionization models predicting nebular emission line ratios: Young stars: CB15 (new tracks, WR stars) + CLOUDY (Gutkin et al 2015) AGN-driven: Power law $F(v) \sim v^{\alpha}$ + CLOUDY (Feltre et al 2015)

Illustration: CIV Doublet in z ~ 7.045 Galaxy

CIV / Ly α ratio much stronger than in z~2 sample – what does this mean?

- High ionisation parameter $\xi_{ion} = 25.5 \pm 0.16$
- Low metallicity: ~0.01 solar

CIII] at z=7.73

Lyα at z=7.73 Oesch et al (2015)

Detection of CIII] doublet – April/June 2015

CIII] 1909/1905 line ratio is a valuable indicator of the electron density and hence, together with UV luminosity can constrain the production rate of ionizing photons.

An Alternative Route to ξ_{ion}

Can also derive ξ_{ion} by estimating the strength of H α from Spitzer photometry in SEDs of $z\sim4-5$ galaxies and thereby infer the production rate of Lyman continuum photons.

The calculation must assume f_{esc} (the other big unknown) although the dependence is not that sensitive

Bouwens et al (2015)

Escape Fraction of Ionising Photons fesc @ z~2

- f_{esc} estimated via spectroscopic or UV imaging below Lyman limit (e.g. Nestor et al 2013)
- Impractical for high z galaxies due to intervening absorption by Ly α forest
- Consider low-ionization absorption lines which trace the HI covering fraction whence $f_c = 1 f_{esc}$

Outflowing Neutral Gas as probe of fesc

EW of low ionisation line gives <u>covering fraction</u> of neutral gas $f_c = 1 - f_{esc}$ Jones et al (2012,2013)

Reduced Covering Fraction of HI at high z?

- Using 8 lensed LBGs with 2.5<z<4.5 observe EW of low ionisation lines decreases with increasing redshift
- Suggests escape fraction is slowly increasing with redshift (from 5 to 12%)
- Radiation pressure leads to `cometary like' structures in simulated high z galaxies implying favourable geometries for escaping photons)

Jones et al (2012, 2013)

Other Sources of Ionising Photons: – An Italian Viewpoint

Recent estimates of number of faint AGN and, assuming f_{esc}=1, implies a significant contribution to reionizing photons from non-thermal sources. Key issue is whether all UV light is non-thermal?

Giallongo et al (2015), Madau & Hardt(2015)

Summary

- Analysis of Planck CMB data has led to a significant revision of when reionisation occurred. Now imagine it began at z~10-12 and ended at z~6 increasing the likelihood that galaxies played a significant role in the process
- Until recently, the sharply-declining fraction of HST-selected galaxies with z > 7 showing the Lyman alpha emission line confirmed reionization ended at z~6 given it is hard to see in the neutral era.
- However, a new "population" (ok..4/4 sources) of luminous [O III] emitting galaxies at z>7.5 are now found with detectable Lyman alpha? Are these a distinct early population with more efficient and harder ionizing spectra?
- Tracking UV metal lines will help quantify the radiation field and see if it comes from unusually hot stars or AGN?
- Spectroscopy holds the key to resolving the two outstanding questions relating to the role of galaxies in cosmic reionization. All key lines are within reach of JWST and ground-based telescopes for most of the reionization era

Munich Joint Conference 2016 "Discs in Galaxies" 11 – 15 July 2016

Invited Speakers:

Maria Bergemann Fréderic Bournaud Jo Bovy **Richard Bower Kevin Bundy Bruce Elmegreen Annette Ferguson** Shy Genel **Reinhard Genzel Tucker Jones** Mark Krumholz **Drew Newman Florent Renaud Eva Schinnerer Rowan Smith** Steffi Walch **Risa Wechsler**

MU

http://www.eso.org/sci/meetings/2016/Discs2016.html

The growth of Miky Way-like galaxies over time. Credit: NASA, ESA, C. Papovich (Texas ASM University), H. Fergus 9. Entred libeiroteth all California Sente Const and L tablet it advert