

Universiteit Leiden

S

Corentin Schreiber

David Elbaz, Maurilio Pannella, Laure Ciesla, Tao Wang, Anton Koekemoer, Marc Rafelski, Emanuele Daddi

ΕP

A slow downfall of star formation efficiency in massive star-forming galaxies

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 312725

Sesto, 13/01/16

(Peng+10: a=**1.0**)

10¹⁰

M∗: stellar mass [M⊙]

 10^{11}

starbursts

Salim+07 z=0 SFR: Hα a=**0.65**

(Peng+10: a=**1.0**)

 10^{12}

100

10

10⁹

is it an increase of stellar mass? or a decrease of SFR?

is it an increase of stellar mass? or a decrease of SFR?

is it an increase of stellar mass? or a decrease of SFR?

 Is there a growing component that increases the stellar mass but not the SFR? Bulges?

(Abramson+14, Whitaker+15) (but see Guo+15)

is it an increase of stellar mass? or a decrease of SFR?

 Is there a growing component that increases the stellar mass but not the SFR? Bulges?

(Abramson+14, Whitaker+15) (but see Guo+15)

 Is the SFR lower because of gas depletion? Or a decreasing efficiency?

(Ilbert+15, Gavazzi+15)

is it an increase of stellar mass? or a decrease of SFR?

 Is the SFR lower because of gas depletion? Or a decreasing efficiency?

(Ilbert+15, Gavazzi+15)

decomposition of the HST H-band profiles with GIM2D (Simard+99,02)

Schreiber+16

```
B/T = (M_{\star} - M_{disk})/M_{\star}
B/T = 0 \leftrightarrow pure disk
B/T = 1 \leftrightarrow pure bulge
```

- Corrected for ≠ mass-to-light ratios of bulge and disk
- Tested with simulations (see also Pannella+09, Bruce+12,14, Lang+14)

decomposition of the HST H-band profiles with GIM2D (Simard+99,02)

Schreiber+16

 $B/T = (M_{\star} - M_{disk})/M_{\star}$ B/T = 0 \leftrightarrow pure disk B/T = 1 \leftrightarrow pure bulge

- Corrected for ≠ mass-to-light ratios of bulge and disk
- Tested with simulations (see also Pannella+09, Bruce+12,14, Lang+14)

Sample: CANDELS fields 0.7 < z < 1.3 $log(M^*) > 10.2$ (H \leq 22.5)

decomposition of the HST H-band profiles with GIM2D (Si

 $B/T = (M_{\star} - M_{disk})/M_{\star}$ B/T = 0 \leftrightarrow pure disk B/T = 1 \leftrightarrow pure bulge

- Corrected for ≠ mass-to-light ratios of bulge and disk
- Tested with simulations (see also Pannella+09, Bruce+12,14, Lang+14)

Sample: CANDELS fields 0.7 < z < 1.3 $log(M^*) > 10.2$ (H \leq 22.5)

the SFR – M_{disk} relation, unique slope?

Using galaxies with Spitzer MIPS and/or Herschel detection (SFR = $SFR_{IR} + SFR_{UV}$)

 SFR – M_{*} slope: 0.54±0.05

Schreiber+16

the SFR – M_{disk} relation, unique slope?

Schreiber+16

Using galaxies with Spitzer MIPS and/or Herschel detection $(SFR = SFR_{IR} + SFR_{UV})$

 SFR – M_{*} slope: 0.54±0.05

SFR – M_{disk}
 slope: 0.60±0.05

the SFR – M_{disk} relation, unique slope?

Schreiber+16

Using galaxies with Spitzer MIPS and/or Herschel detection (SFR = $SFR_{IR} + SFR_{UV}$)

- SFR M_{*}
 slope: 0.54±0.05
- SFR M_{disk}
 slope: 0.60±0.05
- → "bending" still present with disks only
- → bulges are not the answer

is it an increase of stellar mass? or a decrease of SFR?

 Is the SFR lower because of gas depletion? Or a decreasing efficiency?

(Ilbert+15, Gavazzi+15)

is it an increase of stellar mass? or a decrease of SFR?

along the Main Sequence, using Herschel stacking

along the Main Sequence, using Herschel stacking

(see also Magdis+10,12, Magnelli+12, Santini+14, Béthermin+15)

..... $M{gas} = (1/Z) \times (1-f)/f \times M_{dust}$ ------Franco & Cox 86

FMR, Manucci+10

Z: metallicity f: % of metals in dust Leroy+08, Magdis+12 Assuming:

- single dust grain composition
- M* -- Z relation
- fixed value of f

Cross-checked with H_1+CO at z=0

along the Main Sequence, using Herschel stacking

(see also Magdis+10,12, Magnelli+12, Santini+14, Béthermin+15)

Assuming:

- \cdot single dust grain composition
- · M^* -- Z relation
- fixed value of f

Cross-checked with H_1+CO at z=0

along the Main Sequence, using Herschel stacking

A mass-dependent decrease of SFE from z=2 to z=0

- \square Magdis+12 (z=2)
- \diamond this work (CANDELS z=1)
- this work (HRS z=0)

A mass-dependent decrease of SFE from z=2 to z=0

- □ Magdis+12 (z=2)
- \diamond this work (CANDELS z=1)
- this work (HRS z=0)
- Saintonge+11 (z=0)

A mass-dependent decrease of SFE from z=2 to z=0

- □ Magdis+12 (z=2)
- \diamond this work (CANDELS z=1)
- O this work (HRS z=0)
- Saintonge+11 (z=0)

from z=2 to z=0: the "slow downfall" of the SFE

Schreiber+16

from z=2 to z=0: the "slow downfall" of the SFE

Schreiber+16

from z=2 to z=0: the "slow downfall" of the SFE

from z=2 to z=0: the "slow downfall" of the SFE

→ two different processes: *fast* quenching *slow* downfall

• bulge growth/quenching (Martig+10,Abramson+14,Whitaker+15)

• **bulge growth/quenching** (Martig+10,Abramson+14,Whitaker+15)

- **bulge growth/quenching** (Martig+10,Abramson+14,Whitaker+15)
- fast gas reservoir depletion by bars (Gavazzi+15)

- **bulge growth/quenching** (Martig+10,Abramson+14,Whitaker+15)
- fast gas reservoir depletion by bars (Gavazzi+15)

- **bulge growth/quenching** (Martig+10,Abramson+14,Whitaker+15)
- fast gas reservoir depletion by bars (Gavazzi+15)
- gravitational heating (halo quenching) (Dekel & Birnboim 08)

- **bulge growth/quenching** (Martig+10,Abramson+14,Whitaker+15)
- fast gas reservoir depletion by bars (Gavazzi+15)
- gravitational heating (halo quenching) (Dekel & Birnboim 08)
- AGN-driven outflows (Förster Schreiber+14, Genzel+14)

- **bulge growth/quenching** (Martig+10,Abramson+14,Whitaker+15)
- fast gas reservoir depletion by bars (Gavazzi+15)
- gravitational heating (halo quenching) (Dekel & Birnboim 08)
- AGN-driven outflows (Förster Schreiber+14, Genzel+14)
- environment: strangulation (Peng+15)

- **bulge growth/quenching** (Martig+10,Abramson+14,Whitaker+15)
- fast gas reservoir depletion by bars (Gavazzi+15)
- gravitational heating (halo quenching) (Dekel & Birnboim 08)
- AGN-driven outflows (Förster Schreiber+14, Genzel+14)
- environment: strangulation (Peng+15)
- metallicity impact on stellar winds and pre-stellar core formation (Dib+11)

- **bulge growth/quenching** (Martig+10,Abramson+14,Whitaker+15)
- fast gas reservoir depletion by bars (Gavazzi+15)
- gravitational heating (halo quenching) (Dekel & Birnboim 08)
- AGN-driven outflows (Förster Schreiber+14, Genzel+14)
- environment: strangulation (Peng+15)
- metallicity impact on stellar winds and pre-stellar core formation (Dib+11)
- ... ?

- **bulge growth/quenching** (Martig+10,Abramson+14,Whitaker+15)
- fast gas reservoir depletion by bars (Gavazzi+15)
- gravitational heating (halo quenching) (Dekel & Birnboim 08)
- AGN-driven outflows (Förster Schreiber+14, Genzel+14)
- environment: strangulation (Peng+15)
- metallicity impact on stellar winds and pre-stellar core formation (Dib+11)
- ... ?

- → need to study how the SFE evolves with other parameters (metallicity, AGN accretion/jet, outflows, halo mass, ...)
- \rightarrow if possible, for individual galaxies
- → ALMA can help us move forward (see David Elbaz's talk)

Conclusions and take away points

- the Main Sequence has a varying slope
- flattens at high stellar mass and low redshift
- not linked to bulge growth
- generated by a downfall of star formation efficiency

