

Charlotte Mason (UCLA) Sesto, 14 Jan 2016 Modelling Galaxy Luminosity Functions Before the Epoch of Reionization

> with Michele Trenti (U. Melbourne) & Tommaso Treu (UCLA) + the BoRG and GLASS teams

UV Luminosity functions are one of our best tools for studying high z galaxy populations and their evolution

Rest frame UV light traces star forming galaxies

Provides constraints on galaxy formation and evolution models

Can be **integrated to find the flux of ionizing photons** available to reionize the universe

UV Luminosity functions are one of our best tools for studying high z galaxy populations and their evolution

Rest frame UV light traces star forming galaxies

Provides constraints on galaxy formation and evolution models

Can be **integrated to find the flux of ionizing photons** available to reionize the universe

Are we observing hints that the LF changes form at high redshift?

Real? Magnification? Contamination? Cosmic Variance? Physics??

Gravitational lensing in blank fields (*magnification bias*) distorts the bright end of the luminosity function in flux-limited surveys

Turner+1984, Wyithe+2001,2011

Bayesian approach to account for magnification bias - it is not significant for current estimations of the LF

Mason+2015a

But >20% of galaxies in shallow surveys could be strongly lensed - this will dominate wide-area surveys (Euclid, WFIRST)

Mason+2015a, Barone-Nugent+2015

Lots of questions...

- What is driving the evolution of the LF?
- Why does the luminosity density drop at z>8?
- What's happening at the bright end of the LF?
- Are there enough faint galaxies at z>6 to reionize the universe?
- Can we make reasonable predictions for LFs at high z when growth is rapid?
- What will JWST see?

What drives evolution in the LF?

What is the simplest theoretical model to connect halo growth to star formation?

- minimal degrees of freedom
- self-consistency over redshift

Trenti+2010, Tacchella+2013, Mason+2015b

(Behroozi+2013)

Calibrate once at $z \sim 5$ to find SF efficiency $\epsilon(M_h)$, by abundance matching observed LF to theoretical HMF

Mason+2015b

We model star formation histories as a series of epochs of constant SFR as halos grows in mass

Mason+2015b

Luminosity functions are generated through simple assumptions

- Integrate SFR with Bruzual & Charlot (2003) SSP over their ages
 - Salpeter IMF 0.1 100 M_{\odot}
 - $Z = 0.02 Z_{\odot}$
- Dust included by Meurer+1999 extinction correction from observed UV β
 - Fit Bouwens+2009,2014 β
 - extrapolate and interpolate over z
 - assume a Gaussian distribution of β at each M_{UV}

Our simple model is remarkably consistent with observed luminosity functions over 13 Gyr of cosmic time!

During and before Reionization the LF continues to evolve without requiring any evolution in physical conditions

Mason+2015b

Drop in luminosity density explained by steepening of LF — shift of star formation towards less massive galaxies

JWST + WFIRST will detect galaxies at z < ~ 14, impossible without strong lensing (clusters) at z > ~ 15

Including boost from magnification bias in blank fields $m_{\rm UV}$ (Wyithe+2011; Mason+2015a)

Faint galaxies are probably needed to reionize the universe

all galaxies detectable galaxies

$$f_{esc} = 0.1 - 0.3$$

C = 1 - 6
log $\xi_{ion} \sim 25.2$

We are expanding the search for $Ly\alpha$ emission at z>7 by exploiting the power of cluster lenses

(PI Treu) Extensive follow-up ongoing:

Keck DEIMOS and MOSFIRE (PI Bradač)

7 clusters - 20 hrs per cluster

~70 z>7 candidates ~25 with candidate emission lines first results in the Spring...

High z Lya candidates

Schmidt+2015

Conclusions

Magnification bias distorts the brightest end of the LF

Watch out in shallow wide-area surveys!

UV LF and other global galaxy properties at $0 \le z \le 10$ can be easily modelled by assuming halo growth is the dominant driver of galaxy growth

La Contra Contra

No evolution of physical conditions/feedback is needed!

Drop in luminosity density of currently detectable galaxies z > 8 explained by **shift of star formation toward less massive, fainter galaxies** — which will be hard for JWST to see at z > 12

Faint galaxies can reionize the universe given current estimates of escape fraction and clumping factor

More Ly α emission constraints on reionization to come...

