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Galaxy growth through gas accretion... 

...but this gas supply is currently largely 
unconstrained observationally
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Contributors to cosmic star formation density

adapted from Magnelli et al. 2013

ULIRGs (i.e. LIR>1012 Lsun): negligible contributor at z=0. 

         main contributor at z=2. 
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higher z: more SFR per Mstar, flatter slope? (cf. Karim)
Whitaker et al. 2012, 2014

the galaxy ‘main sequence’

see also: Sargent et al. 2012,  Rodighiero et al. 2011



de Vaucouleurs
‘elliptical’

Wuyts et al. 2011

structure/dynamics of main sequence galaxies

at least 50% of MS galaxies are 
in rotating disks, not mergers
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the question

50.000 measurements (1kpc) 
in ~40 nearby galaxies.

the ‘molecular SF law’

Leroy, Walter, et al. 2013

based on 
THINGS and 
HERACLES

PI: Walter & 
Leroy

high-z MS galaxies: not mergers, but disk-like galaxies with ULIRG-like SFR 
 

  why high SFRs? 
• extremely efficient SF process?
• very gas rich systems?

Need to look at the cause for SF: the molecular gas component



the more fundamental plot:
Omega (H2) 
the underlying cause

so far:  
Omega (SFR) 
the result of SF

?

how do we get here?

following SFR?

flat (HI)?

?

the question, posed differently

following Mstar ?



molecular gas: 

reasonable tracer: CO 

    MH2, size, Mdyn, Tmb 

problems: - XCO  
                 - excitation

CO ‘ladder’

Smail et al. 2011 
Swinbank et al. 2011

FSL

example: Eyelash SED
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need to trace molecular component

alternative gas tra
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dust / 
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CO: excitation disadvantage also has advantage: many transitions!

need to trace molecular component

CO(7-6)

CO(1-0)

[CII]

ALMA 10
ALMA 9
ALMA 8
ALMA 7
ALMA 6
ALMA 4
ALMA 3

JVLA Q
JVLA KA

JVLA K



Dramatic (~10x) increase in number of detections in the past decade 

- Many different populations 

- Most detections in CO, some in [CII] 

- all observations targeted — i.e. pre-selection by SF
Carilli & Walter 2013 ARAA

high-z galaxies detected in CO so far



Carilli & Walter 2013 ARAA, 
after Daddi et al. 2010, Genzel 
et al. 2010

or: one super-linear relation? 
(slope: ~1.4) 

alternatives: 

• 2 sequences (MS/starburst) 
with 1Gyr and 0.1 Gyr 
depletion times 

• Bimodal or running 
conversion factor 

…many subtleties…

the ‘star formation law’

LIR vs L’CO    proxy for   SFR vs. M(H2) 
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Carilli & Walter 2013 ARAA; after Magdis et al. 2012 see also Saintonge et al  2013

Mgas=Mstars

MS galaxies only:  

same XCO, same stellar masses 

gas fraction increases by an 
order of magnitude to z=2 

note: same increase as in  

— star formation rate density 

— specific star formation rate

gas fractions (Mgas / Mstars)
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inversion of the SF law?

is this the answer? 

need unbiased census of 
molecular gas
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PdBI
primary
beam

covered full 3mm band in 10 frequency settings
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PdBI 3mm band

CO redshift coverage

[3mm band: low-J coverage, highest fractional BW, largest PB]

almost complete redshift coverage

first molecular deep field (HDF)



sensitivity such that all previously detected 
high-z sources would be detected.

PdBI ~100 hr on-source 
10 freq. setups, ~const σ

Decarli et al. 2014

molecular deep field: survey setup



Maps Spectra

total of 21 IDs, 
4 ‘negative’ 

Decarli et al. 2014

molecular deep field: line candidates



position of CO 
   line candidates

Decarli et al. 2014

molecular deep field: location of line candidates



molecular deep field: blind detections

Walter et al. (2012)

ID.08 & ID.17

spatially coincident IDs 

this corresponds to 
HDF850.1 —  z=5.183



precise location and 
redshift: no counterpart 
identifiable in HST.

dynamics at 0.3” (1.8kpc) 
consistent with merger

source is located in galaxy 
overdensity at z=5.2, 
including one quasar

Walter et al. (2012)

Neri et al. (2014)

[CII] continuum

HDF850.1: precise location and environment



ID.03 most secure line in scan, ‘BzK’ galaxy
z=1.784                  SMG-like excitation
MH2=9 1010 Msun          sSFR=0.15 Gyr-1    
SFR=38 Msun yr-1      Mstar=2.5 1011 Msun

molecular deep field: blind detections



ID.19 only one CO line, but HST grim 
spectroscopy nails z=2.047

MH2=1.3 1011 Msun          sSFR=0.4 Gyr-1    
SFR=8 Msun yr-1         Mstar=1.9 1010 Msun

molecular deep field: blind detections

HST GRISM
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molecular deep field: other blind detections

in case we only have one 
CO line: 

assigned ‘most likely z’ for 
other candidates based on 
SED 

follow-up scheduled



blind detections: gas fractions and location on ‘sf law’

= new blind detections from HDF

ID.19

ID.19

ID.03
ID.03



Longslit spec
Grism spec

CO covered  
CO not covered 
in scan

Very complete at mH<24 mag
M*~5 107 Msun, 3 109 Msun, 1010 Msun

CO stacking of galaxies with good z

Walter et al. 2014



no additional 
detections 
towards galaxies 
w/ spectroscopic 
redshifts.

CO stack: also 
non-detection.

CO stacking of galaxies with good z

Walter et al. 2014



Sargent et al. (2014)

<z>=0.34 <z>=1.52 <z>=2.75

blind constraints: CO luminosity functions

Sargent et al. 2014:  empirical predictions

Lagos et al. 2011

Obreschkow et al. 2009

Keres et al.

: based on semi-analytical cosmological models + ‘recipes’



Walter et al. 2014

Sargent et al. (2014)

<z>=0.34 <z>=1.52 <z>=2.75

limits from blind detections in HDF

Sargent et al. 2014

Lagos et al. 2011

Obreschkow et al. 2009

measurements: higher than the 
predictions  
caveats: small number statistics   
             small volume covered

blind constraints: CO luminosity functions

Keres et al.



ρ(Mstars)

ρ(MHI)

limits from blind detections in HDF

our measurements are high compared to SAMs/hydros, 
though no extrapolation of lum. function

blind constraints: cosmic H2 density

Walter et al. 2014

limits from stack



da Cunha et al. 2012

Tdust = 18 K

will we loose CO as our main tracer?

problem I: conversion factor too high at low metallicities?
problem II: the CMB works against us

consider dust at 18K (MW)

ALMA 1

ALMA 10

CMB provides additional heating, but emission can only be 
measured wrt CMB. Net effect: decreased flux density

detecting dust & CO at higher z: CMB issue



- tremendous progress in past decade 
      studying high-z molecular gas reservoirs

- number of CO-detected galaxies still limited
       (most are SF pre-selected)

- MS galaxies: high SFR because of high Mgas

- ultimate goal: constraints on ΩH2(z): needs molecular deep 
fields and ALMA

- but: CO will fail as a tracer for normal galaxies at z>5

Summary


