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•  Lessons learned at high z

– A Bayesian approach to SED fitting 
– UV SFR improvements 
– Dust attenuation 
– The star-formation and stellar mass relation 

 

•  Star Formation Histories 
 

•  Summary 
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•  Benefits: DEEP, large volume, and  
rest-frame optical 

 

•  Fields: GOODS-S DEEP & WIDE  
            + ERS + HUDF 

•  H160-band selected catalog (Guo et al. 2013) 

•  18 Bands  
•  ACS: B435 , V606 , i775 , I814 , and z850 
•  WFC3: Y098, Y105, J125, JH140, and H160  
•  IRAC (3.6, 4.5, 5.8, and 8.0 µm)  

•  CTIO/MOSAIC and VLT/VIMOS U-bands 
•  VLT ISAAC KS and HAWK-I KS  

 
 
 

 

CANDELS Data 



CANDELS Data 

•  Benefits: DEEP, large volume, and  
rest-frame optical 

 

•  Fields: GOODS-S DEEP & WIDE  
            + ERS + HUDF 

•  H160-band selected catalog (Guo et al. 2013) 

•  18 Bands  
•  ACS: B435 , V606 , i775 , I814 , and z850 
•  WFC3: Y098, Y105, J125, JH140, and H160  
•  IRAC (3.6, 4.5, 5.8, and 8.0 µm)  

•  CTIO/MOSAIC and VLT/VIMOS U-bands 
•  VLT ISAAC KS and HAWK-I KS  

 

•  Photometric redshift selection 3.5<z<6.5 



Bayesian Approach SED Fitting 

•  Bayesian techniques quickly find the best 
model, given prior knowledge and all 
available information 

 

•  Already used in astronomy to determine the 
patchiness of the IGM during reionization 
(Tilvi+14, Pentericci+14) 

 

•  We use a Bayesian SED fitting procedure 
that calculates the posterior on each galaxy 
and marginalizes over nuisance parameters 

 
 

A = fitted parameters    B = Data 
 
P(A) = prior, the knowledge you 
already have. ie., that galaxies cannot 
be older than the age of the Universe 

Reads “Posterior of A given B = ” 



Bayesian Approach SED Fitting 

•  The process of marginalization 
requires the above prior, which 
is effectively dependent on the 
template fluxes, f θ  

•  Tests on SAM objects show that 
inducing other priors shift the 
distributions as expected  

•  The best fit is not always the 
best answer. Individual solutions 
can be very sporadic across the 
parameter space 

 



Bayesian Approach SED Fitting 

•  The process of marginalization 
requires the above prior, which 
is effectively dependent on the 
template fluxes, f θ  

•  Tests on SAM objects show that 
inducing other priors shift the 
distributions as expected  

•  The best fit is not always the 
best answer. Individual solutions 
can be very sporadic across the 
parameter space 

 

Ono+10 



ie.,	
  see	
  Mobasher+14	
  

Nebular Emission 
Attenuation slope 

Sensitivity of  Best Fits to Template Assumptions 



•  When marginalizing over 
posterior, some template 
assumptions become less 
pronounced 

•  Inclusion of nebular emission 
still displays a (small) 
decrement to stellar mass 

•  Effects of nebular emission or 
attenuation type on the SFR 
are now negligible 

Sensitivity of  Marginalized Values to Template Assumptions 



Salmon+15 
arXiv 1407.6012 

•  We quantify our ability to 
derive SFR and M★ by 
comparing to the Somerville 
et al. SAMs. 

•  SAM fluxes are perturbed by 
CANDELS-like uncertainties, 
and used as inputs 

•  The “best-fit” SED is less 
reliable at recovering SFR and 
M★ than using the median of 
the marginalized likelihood. 

Sensitivity of  Marginalized Values to Template Assumptions 

  SAM tests 



Improvements to UV SFR 

•  The LUV is corrected for dust 
according to the marginalized AUV 
posterior. Then, LUV is converted to 
SFR according to an age-dependent 
Kennicutt relation. 

•  The right shows recovery of SFR 
from SAM objects after CANDELS-
like flux perturbations 

 

•  Beta-derived AUV is severely 
underestimated at high SFRs 

 

•  A deeper investigation with the SAM 
dust law is needed 

Salmon+15 (in prep)  
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SFR-M★ in CANDELS 
∞	
  

                                                                      



•  Right: an individual object’s 2D 
likelihood in the plane of SFR-M★ 

•  The scatter in determining a single 
object’s SFR or M★ is orthogonal to 
the main relation (from age-dust 
degeneracies) 

•  These observational uncertainties 
contribute scatter to the SFR-M★ 
plane, and must be accounted for 
with Monte Carlo simulations 

Single Object Scatter in SFR-M★ Plane 



•  log(SFR) ≈ α log(M★ ), α remains <1 (about α=0.6 across all redshift) 

Result: Slope of  SFR-M★ remains un-evolving up to z~6 

Salmon+15 (accepted)  



•  log(SFR) ≈ α log(M★ ), α remains <1 (about α=0.6 across all redshift) 

Result: Slope of  SFR-M★ remains un-evolving up to z~6 

•  Considering most observational uncertainties (purple),  
     the “true” intrinsic scatter in SFR-M★ is as much as 0.2-0.3 dex 

Salmon+15 (accepted)  



Result: SFR-M★ is consistent with many theoretical models 

•  If SFR traces the net gas inflow, then the  
“true” scatter in the inflow rate is 0.2-0.3 dex. 

•  Does this imply that, on average,  
early galaxy growth history is not stochastic? 

Salmon+15 (accepted)  



•  If SFR traces the net gas inflow, then the  
“true” scatter in the inflow rate is 0.2-0.3 dex. 

•  Does this imply that, on average,  
early galaxy growth history is not stochastic? 

•  These observations favor smooth gas accretion  
over these redshifts and stellar masses 

Result: SFR-M★ is consistent with many theoretical models 

Cen+14 

cold gas flows 



How Does this SFR-M★ relation evolve over time? 
and in the literature? 

Speagle+14 

•  At least since the first 800 Myr of 
the Universe, the scatter in SFR at 
a given mass is small (~0.2-0.3 
dex after taking into account 
observational uncertainties).  

•  The SFH can be best described as 
a power law SFR = (t/τ)^γ, where 
γ=1.4 at high redshift (z>4). 



z	
  =	
  4,	
  5,	
  &	
  6	
  
Salmon+14	
  

SFR-M★ evolves little in slope, 
and decreases in scale over cosmic time 

•  At least since the first 800 Myr of 
the Universe, the scatter in SFR at 
a given mass is small (~0.2-0.3 
dex after taking into account 
observational uncertainties).  

•  The SFH can be best described as 
a power law SFR = (t/τ)^γ, where 
γ=1.4 at high redshift (z>4). 

•  The slope and scatter at high 
redshift is consistent with low-z 
results in the literature. 

Speagle+14 



Star-Formation Histories 
∞	
  

                                                                      



A Test: What Does the History of  These Galaxies Look Like? 
 

Papovich+15(accepted) 

•  A number-density selection can track 
the progenitor-to-descendant 
evolution across redshift. 

•  The most massive galaxies in a comoving 
volume, will be the progenitors of the 
most massive galaxies at a later time 



A Test: What Does the History of  These Galaxies Look Like? 
 

Salmon+15 (accepted)  

•  Objects were selected according to an 
evolving number density in stellar 
mass, as predicted by dark matter 
abundance matching (Behroozi+13b) 



A Test: What Does the History of  These Galaxies Look Like? 
Does it match the observed SFR-M★ relation? 

 

•  We find a rising SF history at high 
redshift,  
as expected, with SFR = (t/τ)^γ and 
γ=1.4 

•  Now, let’s feed this history into a 
stellar population synthesis model 

•  Objects were selected according to an 
evolving number density in stellar 
mass, as predicted by dark matter 
abundance matching (Behroozi+13b) 

Salmon+15 (accepted)  



A Test: What Does the History of  These Galaxies Look Like? 
Does it match the observed SFR-M★ relation? 

Salmon+15 (accepted)  



We need dust measurements of  high-z galaxies 
to constrain the SFR efficiency 

•  Theory predicts a rapidly evolving 
gas-mass fraction with redshift. 

•  Data is broadly consistent with trend, 
but scatter in sSFR is still depending 
on SED modeling 

•  Must turn to [CII] from ALMA to 
determine the dusty IR SFR, 
constraining the total UV+IR SFR 

•  We also need gas masses to find the 
cause of the SFR-M★ scatter (is it SF 
efficiency or scatter in galaxy 
formation time?) 

Salmon+15 (accepted)  

Observa<onal	
  uncertain<es	
  are	
  s<ll	
  too	
  high	
  
	
   	
  to	
  make	
  model	
  constraints	
  



Summary 

•  Whenever possible, use marginalized information instead of best-fit results. 
However, this will introduce a prior that is dependent on the assumed templates 

•  The marginalized approach to the UV SFR seems  favorable, though further tests to 
SAMs are needed 

•  The relation between SFR and M★ for star-forming galaxies evolves little in slope, 
and declines in scale since the 1st Gyr of the Universe (Wuyts+11, Panella+14). 

 
 
 

•  The scatter in SFR at a given mass is small at all redshifts (~0.2-0.3 dex after taking 
into account observational uncertainties). If SFR traces the net gas inflow rate, then 
this result favors smooth, cosmological gas accretion onto galaxies. 

 
 
 

•  The SFH can be best described as a power law SFR = (t/τ)^γ at high redshift  
(z>4, γ=1.4), or a delayed-tau model across the age of the Universe (Salmon+15).  
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Lee+12 
Stark+13 

What do we know? 
 Dust is important, lending to scatter in MUV−M★ 

•  There is an observed correlation 
between MUV and stellar mass, but 
with significant scatter 

•  The scatter may be physical, or due to a 
range of dust attenuations at a given 
stellar mass. The answer lies in the scatter 
about the main sequence of SFR-M★ 



•  SFR-M★ can distinguish between star-forming, elliptical, and starburst galaxies 
•  A relation means the current SFR is proportional to the integral of SFR over time 
•  The scatter about SFR-M★ can be due to 

•  scatter in the net inflow rate of gas to fuel star formation 
•  scatter in the galaxy formation time 

Wuyts+11 

What do we know? 
 The relation between SFR and M★ reveals interesting galaxy physics 



•  Physical causes: 

•  Starbursts, AGN 
    

•  Stochastic SF histories 
 

•  Star-formation quenching 
(mainly at low redshift) 

•  M★ correlates strongly with UV dust 
attenuation (Panella+14).  
 
If the scale of SFR-M★ decreases with 
time, then galaxies with the same 
amount of SF are less attenuated at 
higher redshift (it is hosted by a less 
massive, less metal rich galaxy).  

 What drives galaxies off  the SFR-M★ relation?  
 

 and with what uncertainties? 

Whitaker+12 


