Exploring the evolution of the stellar mass function in the redshift range z=1-3

Alice Mortlock Ross McLure Rebecca Bowler

Exploring the evolution of the stellar mass function (and K-band Juminosity function) in the redshift range z=1-3

Alice Mortlock Ross McLure Rebecca Bowler

Exploring the evolution of the stellar mass function (and K-band Juminosity function) in the redshift range z=0.5-3.5

> Alice Mortlock Ross McLure Rebecca Bowler

Motivation

High mass end: Fewer objects means larger errors Low mass end: Fainter objects are harder to observe

Santini et al. 2012

Motivation

Huge amount of work in the literature, but still disagreement on the form of the MF (and LF)

Often disagreements arise from:

Mortlock et al. 2015

- survey area
- depth
- fitting the form of the LF/MF
- differences in galaxy selection

Constraining the bright end: we need large area

UltraVISTA

Deep strips

- Area ~0.4 deg²
- K(AB)=24.5 (5σ 2")
- Interstrip gaps
 - Area ~0.4 deg²
 - K(AB)=23.5 (5σ 2")
 - Deep 3.6 and 4.5µm
 - SPLASH
 - SEDs

CFHT/MegaCam Subaru/Suprime-Cam HST/ACS DR1 DR2

> Subaru/Suprime-Cam (z') Subaru/Suprime-Cam VISTA UKIRT/WFCAM

Bowler et al. 2013

UDS

Area ~0.7 deg² K(AB)=24.75 (5σ 2")

Provide a total of ~1.5 deg² of area.

The K-band selected MF in UVISTA

1

The i-band selected MF in UVISTA

The K+i-band selected MF in UVISTA

The K+i-band selected LF in UVISTA

The K+i-band selected LF in UVISTA Comparison to simulations

The IRAC selected MF in UVISTA Motivation

Stefanon (2014) report a sample of 7 massive galaxies at z>4 selected in S-COSMOS over 1.5 deq².

(see also eg. Caputi 2011, 2012)

IRAC 3.6µm (SEDS; Ashby 2013)

Model of IRAC 3.6µm (TPHOT; Emiliano Merlin)

Residual of IRAC 3.6µm (TPHOT; Emiliano Merlin)

...maybe some massive objects at higher redshift?

Summary

- A combination of K+i band selected samples allows us to push further down the MF and LF using the DR2 UltraVISTA data set.
- The K-band LF looks steeper than previously thought.
- No evidence for the K-band LF being shallower than simulations predict.
- Our IRAC selected sample does not contribute strongly to the MF/LF at z<3.