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ABSTRACT	  

In	  this	  document	  we	  present	  the	  software	  tools	  that	  were	  developed	  by	  the	  
Astrodeep	  collaboration.	  More	  specifically,	  T-‐PHOT	  that	  is	  the	  evolution	  of	  
CONVPHOT	  and	  implements	  also	  a	  set	  of	  improvements	  taken	  from	  TFIT,	  and	  
gencat	  that	  was	  used	  for	  the	  creation	  of	  simulated	  images.	  Both	  software	  have	  
been	  internally	  released	  and	  extensively	  used	  by	  the	  collaboration	  for	  obtaining	  
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T-‐PHOT:	  the	  most	  advanced	  tool	  for	  image	  de-‐confusion	  
	  
T-‐PHOT	  is	  the	  first	  software	  tool	  delivered	  to	  the	  public	   from	  the	  AstroDeep	  project.	  Mainly	  
developed	  at	  INAF-‐OAR	  by	  Emiliano	  Merlin,	  T-‐PHOT	  is	  a	  software	  package	  aimed	  at	  precision	  
photometry	  of	   extragalactic	  multiwavelength	  datasets,	   using	   the	  PSF-‐matching	   technique	   to	  
de-‐confuse	  the	   images	  and	  obtain	  reliable	  photometric	   flux	  measurements	  even	  for	  blended	  
sources.	  T-‐PHOT	  stems	  from	  its	  direct	  predecessors	  TFIT	  (Laidler	  et	  al.	  2007)	  and	  CONVPHOT	  
(De	  Santis	  et	  al.	  2007),	  and	  merges	  their	  features	  into	  a	  faster	  and	  more	  robust	  code.	  On	  top	  of	  
that,	  T-‐PHOT	  improves	  on	  such	  codes,	  both	  in	  terms	  of	  performance	  and	  in	  the	  accuracy	  of	  the	  
results.	   It	   also	   incorporates	   a	   number	   of	   new	   options	   and	   features	   to	   speed	   up	   the	  
computation,	  remove	  potential	  sources	  of	  errors,	  and	  extend	  the	  range	  of	  cases	  in	  which	  it	  is	  
possible	  to	  use	  the	  code.	  	  T-‐PHOT	  is	  therefore	  a	  completely	  new	  and	  versatile	  tool,	  suitable	  for	  
performing	  detailed	  photometry	  on	   images	   taken	   in	  a	  very	  broad	  range	  of	  wavelengths,	  not	  
only	  in	  the	  optical	  domain	  but	  also	  in	  the	  FIR	  and	  sub-‐mm	  regimes	  where	  its	  performance	  is	  
comparable	   to,	   or	   better	   than,	   other	   existing	   codes	   (e.g.	   FASTPHOT	   by	   Bethermin	   et	   al.,	   or	  
DESPHOT	  by	  Roseboom	  et	  al.).	  
	  

	  
Figure	  1:	  Example	  of	  the	  results	  of	  a	  standard	  T-‐PHOT	  run	  using	  real	  priors.	  Left	  to	  right:	  HRI	  
(FWHM	   =	   0.2”),	   LRI	   (FWHM	   =	   1.66”),	   and	   residuals	   image	   for	   a	   simulated	   dataset.	   LRI	   and	  
residual	  image	  are	  on	  the	  same	  intensity	  scale	  

	  

In	   its	   pipeline,	   T-‐PHOT	   goes	   through	  well-‐defined	   stages,	   in	   each	   of	   which	   a	   single	   task	   is	  
performed.	  It	  uses	  high-‐resolution	  priors	  to	  determine	  the	  positions	  and,	  when	  possible,	  the	  
morphological	   information	   of	   the	   sources,	   and	   then	   uses	   this	   information	   to	   measure	   the	  
fluxes	   of	   those	   sources	   in	   a	   lower	   resolution	   image	   (LRI).	  An	   example	   of	  T-‐PHOT	   results	   is	  
shown	   in	   Fig.1.	   T-‐PHOT	  accepts	   three	  different	   kinds	   of	   priors:	   a	   catalog	   of	   sources	   from	  a	  
high	  resolution	  image	  (HRI),	  and/or	  analytical	  2-‐d	  models	  obtained	  e.g.	  using	  Galfit	  (Peng	  et	  al.	  
2010),	   and/or	  a	   catalog	  of	  positions	   for	  unresolved	  point-‐sources	   (common	  practice	  or	  FIR	  
and	  sub-‐mm	  band-‐passes).	  Note	  that	  the	  use	  of	  mixed	  priors	  is	  allowed,	  making	  it	  possible	  to	  
e.g.	   remove	   foreground	   bright	   sources	   by	   modeling	   them	   as	   analytical	   2-‐d	   profiles	   and	  
simultaneously	  fitting	  them	  along	  with	  standard	  “real”	  cutouts	  (this	  is	  the	  procedure	  that	  has	  
been	  followed	  to	  obtain	  K	  and	  IRAC	  catalogs	  on	  the	  Frontier	  Fields	  cluster	  images,	  see	  D4.3).	  	  
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Figure	  2:	  Accuracy	  of	   the	   flux	  determination	   in	  a	   simulation	  containing	  non-‐overlapping,	  PSF-‐
shaped	   sources	   and	   with	   “perfect”	   detection.	   Relative	   measured	   flux	   difference	   (f_meas-‐
f_true)/f_true	   is	   plotted	   versus	   logarithm	   of	   the	   input	   flux	   f_true,	   for	   a	   simulated	   image	  
populated	   with	   PSF-‐shaped	   sources	   (FWHM=1.66”).	   Each	   dot	   corresponds	   to	   a	   single	   source,	  
with	  different	  symbols	  and	  colors	  referring	  to	  various	  diagnostics	  as	  explained	  in	  the	  legend	  and	  
in	   the	   colorbar.	   The	   black	   solid	   line	   is	   the	   average	   in	   bins,	   the	   yellow	   shade	   is	   the	   standard	  
deviation.	  The	  vertical	  dashed	   line	   shows	   the	   limiting	   flux	  at	  1σ,	   f=1.	  The	   inner	  panel	   shows	  a	  
magnification	  of	   the	  brighter	  end	  of	   the	  distribution.	  The	   fit	  has	  been	  performed	  on	  the	  whole	  
image	  at	  once.	  

	  
A	   normalized	   low-‐resolution	   model	   (template)	   of	   each	   object	   is	   created	   degrading	   its	   HRI	  
cutout,	  or	   its	  model	  profile,	  using	  a	  PSF-‐matching	  kernel	   -‐	  or	   just	   the	  LRI	  PSF	   if	  unresolved	  
priors	   are	   used.	   Then,	   to	   overcome	   the	   problem	   of	   the	   blending	   of	   sources,	   a	   Chi-‐square	  
minimization	  problem	  is	  solved,	  fitting	  all	  the	  sources	  at	  once	  in	  a	  chosen	  region.	  The	  fit	  can	  
be	  performed	  on	  the	  whole	  LRI,	  giving	  the	  most	  reliable	  results,	  or	  constructing	  “cells”	  around	  
each	  source	  including	  all	  its	  potentially	  contaminating	  neighbors	  in	  the	  fit.	  The	  standard	  TFIT	  
approach,	  consisting	  in	  dividing	  the	  LRI	  in	  a	  regular,	  arbitrary	  grid	  of	  cells,	  is	  still	  allowed	  but	  
it	   is	   strongly	  discouraged,	   since	   it	   has	  proven	   to	   introduce	  non	  negligible	   errors	  due	   to	   the	  
potential	  contamination	  from	  the	  light	  coming	  from	  objects	  just	  outside	  the	  considered	  cell.	  	  
Nominal	   statistical	   uncertainties	   are	   assigned	   to	   each	   measurement	   from	   the	   covariance	  
matrix	   of	   the	   problem.	   However,	   systematic	   errors	   may	   affect	   the	   measurements	   in	   some	  
particular	  cases	  (e.g.,	  saturated	  or	  blended	  priors	  and	  border	  sources):	  in	  such	  cases,	  a	  flag	  in	  
the	  output	  catalogue	  highlights	  the	  problem.	  Also,	  strongly	  covariant	  objects	  can	  have	  badly	  
measured	  fluxes:	  a	  “covariance	  index”	  offers	  a	  qualitative	  indication	  about	  this	  risk.	  
	  
After	   the	   fitting	  stage,	  T-‐PHOT	  can	  perform	  a	  spatial	   cross-‐correlation	  between	   the	  LRI	  and	  
the	  model	   image	  constructed	   from	  the	   templates,	   to	  obtain	   locally	   registered	  kernels	  which	  
can	   be	   used	   for	   a	   second	   pass	   in	   order	   to	   minimize	   spatial	   inaccuracies.	   The	   main	   final	  
products	   of	   the	   run	   are	   a	   catalogue	   including	   positions,	  measured	   fluxes,	   uncertainties	   and	  
diagnostic	  flags,	  and	  residual	  image	  obtained	  subtracting	  the	  model	  image	  from	  the	  LRI,	  useful	  
to	   check	  at	   a	   glance	   the	  overall	   goodness	  of	   the	   fit.	  Other	   sub-‐products	   and	  diagnostics	   are	  
also	  produced.	  The	  accuracy	  of	   flux	  determination	  with	  T-‐PHOT	  in	  a	  simulation	   is	  shown	  in	  
Fig.2	  and	  the	  comparison	  to	  the	  TFIT	  residuals	  is	  shown	  in	  Fig.3.	  	  
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Figure	  3:	  UDS	  I	  band	  TFIT	  vs.	  T-‐PHOT	  comparison.	  The	  panel	  on	  the	  left	  shows	  a	  small	  patch	  of	  
the	   “official”	   CANDELS	   residual	   image	   obtained	   using	   TFIT.	   The	   residual	   image	   of	   the	   same	  
regions	   is	   showed	   in	   the	   right	   panel,	   this	   time	   obtained	   using	   T-‐PHOT	  with	   “cells-‐on-‐objects”	  
method	  and	  improved	  local	  kernel	  registration.	  Note	  the	  disappearance	  of	  many	  spurious	  black	  
spots	  

	  
We	  checked	  the	  performance	  of	  T-‐PHOT	  on	  a	  wide	  set	  of	  simulated	  data	  and	  on	  real	  datasets.	  
T-‐PHOT	  proves	  to	  be	  much	  faster	  than	  its	  predecessors,	  up	  to	  a	  factor	  of	  hundreds	  in	  the	  most	  
favorable	  situation;	  it	  can	  deal	  with	  large	  datasets	  with,	  and	  to	  give	  more	  accurate	  results	  with	  
an	  appropriate	  choice	  of	  the	  input	  parameters.	  
	  
For	   all	   these	   reasons,	   T-‐PHOT	   is	   already	   being	   used	   by	  many	   researchers	   both	   within	   the	  
ASTRODEEP	   consortium	   and	   not.	   In	   particular,	   it	   is	   currently	   being	   used	   to	   obtain	  
photometric	  catalogues	  of	  K	  and	  IRAC	  Frontier	  Fields	  images	  (see	  D.43)	  and	  SCUBA	  CANDELS	  
images	  (see	  D3.3),	  and	  will	  be	  used	  in	  the	  near	  future	  to	  re-‐analyze	  IRAC	  CANDELS	  GOODS-‐S	  
data.	  
	  
T-‐PHOT	  has	  been	  presented	  and	  advertised	  by	  E.	  Merlin	  at	  the	  ADASS	  XXIV	  conference	  held	  in	  
Calgary	  (CA)	  in	  October	  2014,	  and	  at	  the	  conference	  “The	  spectral	  energy	  distribution	  of	  high	  
redshift	  galaxies”	  held	  in	  Sexten	  (IT)	  in	  January	  2015.	  
	  
The	  paper	  “T-‐PHOT:	  a	  new	  code	  for	  PSF-‐matched,	  prior-‐based,	  multiwavelength	  extragalactic	  
de-‐confusion	  photometry”	  (E.	  Merlin	  et	  al.)	  has	  been	  submitted	  to	  A&A,	  and	  is	  attached	  to	  this	  
document.	  
	  
T-‐PHOT	  comes	  as	  a	  tarball	  including	  documentation,	  installation	  scripts,	  and	  the	  source	  code.	  
It	   consists	   of	   Python	   envelopes	   calling	   fast	   C	   and	   C++	   codes,	   only	   needing	   a	   few	   external	  
dependencies	  (some	  standard	  Python	  modules,	  the	  CFITSIO	  and	  FFTW3	  libraries).	  It	  is	  easy	  to	  
install	   and	   to	   use	   on	   UNIX	   and	   MAC-‐OS,	   with	   a	   user-‐friendly	   parameter	   file	   and	   a	  
straightforward	  command	  line	  from	  a	  terminal.	  
	  
T-‐PHOT	   is	   a	   public	   software	   and	   can	   be	   downloaded	   from	   the	   ASTRODEEP	   website	   by	  
subscribing	  to	  a	  mailing	  list.	  New	  releases	  are	  planned	  in	  the	  near	  future,	  with	  the	  inclusion	  of	  
additional	  options	  to	  make	  it	  even	  further	  versatile	  and	  appealing	  to	  the	  scientific	  community.	  



Generating mock catalogs with gencat

1 Introduction
Up until now we have been using the SkyMaker1 program (E. Bertin) to produce realistic high resolution
images, which we regularly use to test the various source extraction methods and algorithms we are
developing within Astrodeep. In input, this program requires a simulated galaxy catalog, which is
produced by the Stuff 2 program (also created by E. Bertin).

The quality of these simulated catalogs is not optimal. In particular, the distribution of the simulated
fluxes in some bands differ substantially from those that are observed, leading to simulated images
that are not representative of the real products we are working on. Unfortunately, both SkyMaker and
Stuff are poorly documented, and we cannot easily remedy to this problem. For this reason, we have
developed a new tool to generate simulated galaxy catalog, called gencat3. The main ideas behind the
procedure are summarized in Section 2.

This new tool can generate catalogs in the format required by Sky Maker, and therefore can be used
as a “drop-in” replacement for Stuff. Using this tool we are able not only to generate fluxes in all the
photometric bands from 3000 Å to 8 µm, like Stuff, but we also merge in our technique to simulate far-
IR fluxes from 8 µm to 3 mm, essentially covering, in a single tool, the whole wavelength range where
stellar and dust emission dominate.

Finally, the quality of the generated catalogs has greatly improved compared to original catalogs
built with Stuff. As can be seen in Section 3, we are able to produce flux distributions in all the bands
which are indistinguishable from the real, observed flux distributions. The simulated images, both at
Hubble and Herschel-like resolution, have very good statistical properties. This will allow us to perform
more accurate tests of our methods, and also to deliver high quality simulations to the community.

2 Creating the mock catalog
The main idea behind the generation process of this mock catalog is that everything can be statistically
inferred from the redshift, the stellar mass and the “star-forming” flag of each galaxy. The procedure
is therefore composed of two main steps: first, generate a realistic distribution of masses at different
redshifts both for active and passive galaxies using observed mass-functions; second, estimate all the
other physical properties using statistical recipes calibrated on the observed galaxies: morphology, SFR,
attenuation, optical colors, and sky-projected position.

2.1 Generating redshifts and masses
The purpose of the mock catalog is the simulate a field similar to the GOODS–South CANDELS field.
Therefore, in order to most closely mimic the properties of this field, we use the conditional mass func-
tions at different redshifts which are described in Schreiber et al. (2015). Briefly, the whole GOODS–
South catalog is cut at H < 26 to ensure high completeness, split in two population of “active” and
“passive” galaxies according to the UVJ color-color selection, and further split in multiple redshift bins
from z = 0.3 to z = 4.5. These redshifts and stellar masses have been computed by Maurilio Pan-
nella with EAZY and FAST, respectively, on the official CANDELS photometry. We then computed the
mass distribution of each of these sub-samples, performing first order completeness corrections, and fit
a double Schechter law. Using these fits, we can generate mass functions down to arbitrarily low stellar
masses. To reach higher redshifts, we have used the mass functions calculated by Grazian et al. (2015)

1http://www.astromatic.net/software/skymaker
2http://www.astromatic.net/software/stuff
3https://github.com/cschreib/gencat

1

http://www.astromatic.net/software/skymaker
http://www.astromatic.net/software/stuff
https://github.com/cschreib/gencat


for z < 7.5. The z = 0 mass function is adapted from Baldry et al. (2012), but it should not matter much
for now since we are aiming for pencil-beam surveys which contain very few local galaxies.

Once this is done, we define a fine grid of redshifts, e.g. from z = 0.01 to z = 6, and choose the
sky area of the mock catalog. For now we work with an area similar to the first catalog produced with
Stuff, i.e. 17 × 17 arcmin. Then for each element of the redshift grid, we use the mass functions to
generate a sample of stellar masses. The minimum stellar mass Mmin can be chosen either to be constant
(e.g. 107 M�) or to vary with redshift so as to reach a given magnitude limit in the selection band, for
example H < 27. This requires using the optical SED library described below to obtain a rough estimate
of the mass completeness.

At this stage, the mock catalog has exactly the same mass and redshift distribution as the CANDELS
catalog in GOODS–South. This is a good thing to ensure a high fidelity of the simulated catalog, but
one has to keep in mind that, by construction, this also means that we have imposed the same cosmic
variance than in the real GOODS–South field.

2.2 Generating morphology
The Stuff program was not only generating photometry, but also detailed morphology in each band. In
particular, each galaxy is assumed to be composed of two component: a bulge (de Vaucouleur profile,
Sérsic n = 4) and a disk (exponential profile, Sérsic n = 1). In order to be able to plug this new mock
catalog in SkyMaker directly, we also need to generate these informations.

The first important quantity is the bulge-to-total ratio B/T , which tells what fraction of the total mass
of the galaxy goes into the bulge, as opposed to the disk. We generate this quantity using the relations
between B/T and M∗ published by Lang et al. (2014). These relations are conveniently provided both
for active and passive galaxies, at different redshifts. They report no strong redshift evolution between
z = 1 and z = 2, so we chose to make the B/T simply depend on mass following

(B/T )active = 0.2 ×
( M∗
1010

)0.27

× 10G(0.2) and (1)

(B/T )passive = 0.5 ×
( M∗
1010

)0.1

× 10G(0.2) , (2)

where G(σ) is a zero-mean Gaussian noise of amplitude σ. The B/T is then clamped to 0 ≤ B/T ≤ 1.
This quantity will also be used later to define the colors of the galaxies.

The other set of morphological properties we need to generate are the axis ratio, position angle and
size of both the disk and the bulge component of each galaxy. We chose to give the same position angle
to both components (which is the average trend observed in the morphological catalogs of Simard et
al. 2011 for galaxies in the SDSS), and chose it randomly with uniform probability between −90 deg
and +90 deg.

The axis ratio is generated following the distribution observed in the real catalogs: for the disk
(resp. bulge), we built a sample of galaxies with Sérsic index n < 1.5 (resp. n > 2.5) and computed
their axis ratio distribution (Sérsic indices were computed by van der Wel et al. 2014). The result is
shown in Fig. 1. As expected, disks-dominated galaxies (blue) are found to be more elongated than
bulge-dominated galaxies (red).

To estimate the sizes, we used the same sub-samples as above, and looked at the relation between
the observed H-band size, mass, and redshift. We could parametrize the observed relations and their
scatter with the following formula

Rdisk =

(1 + z)−1.25 ×
(

M∗
1010

)0.17
× 10G(0.2) for z < 1.5,

0.4 × (1 + z)−0.25 ×
(

M∗
1010

)0.17
× 10G(0.2) for z > 1.5, and

(3)

Rbulge = (1 + z)−2.5 ×

( M∗
1010

)0.7

× 10G(0.2) , (4)
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Figure 1: Observed axis ratio distribution of disk-
dominated (n < 1.5) and bulge-dominated (n > 2.5)
galaxies. Sérsic fits were taken from the CANDELS
wiki, and were produced by Arjen van der Wel.
Note that we also added a cut in stellar mass, in
order not to be polluted by low mass faint galax-
ies (M∗ > 109 M� for disks, M∗ > 3 × 1010 M� for
bulges).

2.3 Generating star formation rate
To generate star formation rates (SFRs), we used the Main Sequence approach, which attributes a “main
sequence” SFR to every galaxy, knowing its redshift and its stellar mass. We used the calibration
published in Schreiber et al. (2015), Eq. 9. On top of this, a random lognormal scatter of 0.3 dex is
added, and a small fraction (3.3%) of the sample is randomly put in the “starburst” mode, following the
2SFM model (Sargent et al. 2012), and using the best-fit parameters obtained in Schreiber et al. (2015).
In the end:

RSB =

10G(0.3) for Main Sequence galaxies
5.2 × 10G(0.3) for Staburst galaxies

(5)

SFR = SFRMS × RSB. (6)

This quantity, RSB, the “starburstiness”, is used later to generate the IR photometry.
Then, we split this SFR between obscured and non-obscured components. The obscured component

generates the IR fluxes, while the non-obscured component emerges naturally in the UV. To do so, we
use the evolution of IRX ≡ LIR/LUV observed in the Herschel stacks of Schreiber et al. (2015) (see also
Heinis et al. 2014), which gives

IRX =
LIR

LUV
=

15.8 ×
(

M∗
3×1010

)0.45 z+0.35
for z < 3

15.8 ×
(

M∗
3×1010

)1.7
for z > 3.

(7)

From there is it then simple to recover LIR and LUV, and therefore the obscured and non-obscured
part of the SFR. Passive galaxies are given zero SFR.

2.4 Generating optical colors
To generate UV to near-IR fluxes, we first need to choose an optical SED for each galaxy. To do so,
we choose to start from the UV J color-color diagram. In this diagram, passive galaxies occupy a well
defined region (red cloud), while star-forming galaxies form a “sequence”, which is actually generated
by a combination of attenuation and age (see e.g. Williams et al. 2009, Fig. 8). This is useful, because it
is known that both age and attenuation (e.g. Pannella et al. 2014) correlate strongly with the stellar mass.
We used this fact to create a simple recipe to associate colors to active and passive galaxies, knowing
only their redshift and masses.
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Figure 2: Left: Observed median colors of galaxies of different masses, for different redshift (from
z = 0.3 to z = 3.0). The trend is that galaxies move diagonally toward the bottom-left corner when
going to higher redshifts. Right: Generated UV J colors of disk (blue) and bulge (red) components of
galaxies with M∗ > 109 M� and 0.8 < z < 1.2.

We find that passive galaxies are well condensed in a fixed region, close to V − J = 1.25 and
U − V = 1.85, with a very small trend with stellar mass. The principle is to put all passive galaxies at
this position, shift them along the attenuation vector direction according to their stellar mass, and add
some Gaussian noise to the generated colors. The final colors are chosen following

A = 0.1 × (log10(M∗/M�) − 11) + G(0.1) , (8)
(V − J)passive = 1.25 + A + G(0.1) , (9)
(U − V)passive = 1.85 + 0.88 × A + G(0.1) . (10)

Note that the “shift” A is clamped to the range [−0.1, 0.2] so that galaxies do not leave the red cloud.
For star-forming galaxies, one needs to be a bit more subtle because their colors vary a lot more. As

can be seen, e.g., in Fig. 1 from Schreiber et al. (2015), star-forming galaxies populate different regions
of the UV J diagram depending on the stellar mass and redshift: massive galaxies are preferentially
located on the top-right corner (red U −V and V − J colors), while low-mass galaxies are at the bottom-
left (blue in U −V and V − J), and they are shifted to bluer colors at higher redshift. We can parametrize
this evolution.

To do so, we took a sample of UV J star-forming galaxies in GOODS–South, and split them in mass
bins. We further decompose each of these bins by slicing in redshift, and compute the median U − V
and V − J colors. This produces a set of tracks in the UV J diagram, which are reproduced in Fig. 2
(left). It turns out that these tracks fall roughly on a fixed line of slope 0.65, so reproducing these trend
is relatively easy. We end up with the following formula

A0 = 0.58 × erf(log10(M∗/M�) − 10) + 1.39 , (11)

As =

−0.34 + 0.3 × log10

(
M∗

2.2×1010 M�

)
for M∗ > 2.2 × 1010 M�,

−0.34 for M∗ < 2.2 × 1010 M�,
(12)

(13)
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A1 = A0 + As × z , (14)
A = A1 + G(0.1) , (15)

(V − J)active = 0.0 + A × cos(θ) + G(0.12) , (16)
(U − V)active = 0.45 + A × sin(θ) + G(0.12) . (17)

with A1 being limited to at most 2, and θ = arctan(0.65).
This parametrization will generate a UV J diagram very similar to the observed one, with the same

redshift and mass trends. However, the observed UV J diagram is made out of the total light of the
galaxy: here we need to decompose the galaxy into a bulge and a disk component, and both have
usually different colors. The way we chose to handle this issue is to always use the “active” UV J col-
ors for disk components, always use the “passive” UV J colors for bulges of bulge-dominated galaxies
(B/T > 0.6), and randomly use either the “passive” or the “active” UV J colors for the bulges of in-
termediate galaxies (B/T < 0.6) with 50% probability each. These prescriptions are lacking any direct
observational constraints, and were therefore chosen somewhat arbitrarily so as to both reflect intuition
and reproduce the observed color distribution.

The resulting UV J colors are shown in Fig. 2 (right).

2.5 Choosing an optical SED
We then use these colors to associate a full optical SED to the galaxies. The idea is to consider that there
is an average SED at each position on the UV J diagram, and that one can attribute this average SED to
the galaxies that are located at this position.

Therefore we have binned the UV J plane into small buckets of about 0.1 mag, and computed the
observed average rest-frame SED of all the galaxies that fall inside each bucket, assuming no redshift
dependence. These rest-frame SEDs are actually generated by FAST with Bruzual & Charlot (2003)
stellar population models, assuming a delayed exponentially declining star formation history. The result
is a wide library of about 850 reference SEDs, all normalized per unit stellar mass.

Then the procedure is simply to pick one of these SEDs depending on the position of the galaxy
in the UV J diagram. We run this procedure for both disk and bulge components, multiply the chosen
SEDs by the respective stellar mass of each component, redshift them to the redshift of the galaxy, and
finally integrate the resulting SED over the chosen UV-NIR passbands to generate the corresponding
fluxes.

2.6 Choosing an IR SED
The generation of the IR fluxes is the same as the one we used to generate the Herschel images with
the previous Astrodeep mock catalog. Basically, we use the Chary & Elbaz (2001) library of FIR
SEDs, normalize them to unit LIR, and attribute one of these SEDs to every galaxy, from its redshift and
“starburtiness” (see Section 2.3). At higher redshifts, galaxies have warmer dust temperatures (Magdis
et al. 2012), and the dust temperature also correlates with the offset of a galaxy from the Main Sequence
(Magnelli et al. 2014). We use here the redshift evolution that was observed in the stacked Herschel
SEDs of Schreiber et al. (2015).

Then, as for the optical flux computation, the chosen SED is multiplied by the LIR of the galaxy,
redshifted, and integrated over the chosen IR passbands to produce the final fluxes. For simplicity, we
chose to attribute all of the FIR flux to the “disk” component. This should not matter, since at these
wavelengths we usually do not have the resolution to disentangle between bulge and disk.

2.7 Generating sky positions
The final step is to generate a position on the sky for each galaxy. Here we make very simplistic
assumptions. First, we assume the same angular correlation at all redshifts, which means that galaxies
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will be clustered on the same angular scale. This angular scale will correspond to a smaller proper
distance at z = 0.5 than at z = 1, so it will somehow mimic the increase of proper distance clustering
with time. Second, we consider that there is no sub-population of galaxies that is more clustered than the
rest. E.g., massive early-type galaxies are treated the same way as dwarf star-forming galaxies. While
this is probably wrong, it should be a sufficient approximation for now, and we can easily improve
this later if need be. In fact, clustering is a relatively minor ingredient, and for our purposes it is only
important that we generate catalogs with realistic sky-projected galaxy densities, with voids and peaks.
The dependence on galaxy colors and properties is a second order effect.

We use these assumptions to measure the correlation function in the real GOODS–South catalog.
We take into account that this correlation function is blurred by photometric redshift uncertainties, and
use it to generate the position of each galaxies within a given redshift slices in the mock catalog using
the Soneira & Peebles algorithm (power law index equal to 0.4, number of levels Nlevel = 4). Doing so,
one gets the right two-point correlation slope, but not the right amplitude: the correlation is too strong
at all scale. To fix this, one has to say that there is a fraction (60%) of the sample which is not clustered,
and we assign them uniformly random sky positions. This way, we reproduce the observed two-point
correlation function over the whole field.

3 Results
We use two diagnostics to assess the quality of this mock catalog in each photometric band. The first
one is the flux distribution of all galaxies, and the second is the pixel distribution of simulated images
(only for confused FIR images where blending is important).

In what follows, we use a mock catalog generated with 90% completeness in H-band down to
H = 29, from z = 0.01 to z = 6. Over 17 × 17 arcmin, this represents 104 000 galaxies. The minimum
stellar mass goes as low as 5 × 104 M� at z = 0.01, and rises with redshift to reach 7 × 106 M� at z = 1,
and 108 M� at z = 4.

3.1 Optical magnitudes
Fig. 3 is showing the agreement of the total magnitude distribution, in multiple bands. This agreement
is very good in the NIR. Since these wavelengths are most closely correlated to the stellar mass of
the galaxies, and since the mock catalog was built to reproduce exactly the stellar mass function in
GOODS–South, this should not come as a surprise. Still, this shows that the procedure works well.
Generating the UV-optical (F435W and F606W) fluxes is more complex, because these bands actually
trace the emerging UV light coming from star formation. Nevertheless, the agreement here is also very
good.

We quantify the differences using the χ2 statistics, and assuming only Poisson uncertainties (i.e.,
statistical fluctuations in the histograms, but not flux measurement uncertainties). For each of these
bands, we measure reduced χ2 of, respectively (from top-left to bottom-right), 4.23, 3.66, 2.22, 3.75
2.31 and 8.20 (for magnitudes brighter than 27, 27, 26, 26, 25 and 25, respectively). If our simulation
was a perfect match to the data, and the observed differences were only due to statistical fluctuations,
we would obtain χ2 ∼ 1. The fact that we do not reach this value indicates that there are, of course,
more subtle mechanisms in the real Universe than what we introduced here. In particular, the χ2 of the
IRAC channel 4 magnitudes is particularly high. We suspect this is due to the peculiar position of the
observed 8 µm, which is probing dust emission at low-redshifts, and stellar emission at higher redshifts.
The simulation here can be improved by introducing a better treatment of the junction point between
these two wavelength regimes, and by choosing more carefully the IR SED. This is currently work in
progress.

6



Figure 3: Total magnitude distribution of the real GOODS–South catalog (black) and the mock catalog
(red), in different HST bands and Spitzer IRAC.

3.2 FIR fluxes
Fig. 4 shows the same plots, this time with the FIR fluxes. Again, the agreement is excellent. The χ2

values are, respectively, 4.29, 2.25, 1.65, 1.10, 0.47, 1.50. Because the available observations are less
extensive than for the optical magnitudes, these χ2 are less stable, but still we do find values very close
to 1. The worst case is that of the MIPS 24 µm, which is likely related to the IRAC 8 µm issue we
reported in the previous section.

We also analyze in Fig. 5 the pixel histogram distribution of the simulated maps against the observed
maps. This second test is important because of the blending, which sometimes pollutes the measured
flux catalogs (two sources are combined into a single one), which tends to produce more bright fluxes
than there actually is in the real Universe. By analyzing the map statistics directly, one gets rid of this
issue of the counter part identification. This comparison also takes into account the clustering, which
will tend to increase the contrast of the map without actually changing the fluxes of individual galaxies.
The downside is that the bright pixel counts are very sensitive to statistical fluctuations, and a single
very bright (but usually rare) object can drastically impact the measured distribution. Yet, here also the
agreement is good. We find χ2 = 3.03, 1.47, 4.98, 3.28, 2.71, and 1.09.

3.3 Generate images
Finally, we give an example is the simulated images we have produced in Fig. 6. This illustrates the
power of our simulations, which are now physically consistent from the UV to the far-IR.

7



Figure 4: Total flux distribution in the MIR to FIR of the real GOODS–South catalog (black) and the
mock catalog (red).

Figure 5: Pixel histogram distribution of the simulated FIR images versus real images in GOODS–
South.
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Figure 6: Simulated maps in the Hubble H band (top-left), Spitzer 24 µm (top-right), Herschel PACS
100 µm (bottom-left) and SPIRE 500 µm (bottom-right).
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Installing gencat

1 Forewords
gencat is written in C++ and has a few dependencies. I have tried to keep the number of
these dependencies as low as possible, and in fact for the moment there are four:

• phy++, a library for numerical analysis that I have developed during my PhD,

• cfitsio, for handling FITS files,

• WCSlib, for handling sky-to-pixel conversions,

• and CMake, for managing the building process (dependencies, and platform specific
stuff).

2 Install dependencies
If your operating system comes with a package manager, this should be very easy. Apart
from phy++ that we will address in the next section, these dependencies are standard li-
braries and tools that should be available in all the package managers.

• Mac users:

sudo port install cfitsio wcslib cmake

or

sudo brew install cfitsio wcslib cmake

• Linux/Ubuntu users:

sudo apt-get install libcfitsio3-dev wcslib-dev cmake

• Other Linux distributions: You get the point. Use yum, apt, pacman, or whatever
package manager is supported by your distribution.

• Windows users: Install Ubuntu and go to point 2.
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If you don’t have a package manager, then you have to compile these tools and libraries
yourself... I hope it doesn’t come to that, because you may loose a lot of time figuring this
out. But in the eventuality, here are the links to places where you can download the source
code. Follow the build instructions given on their respective each web page.

• cfitsio: http://heasarc.gsfc.nasa.gov/fitsio/fitsio.html

• WCSlib: http://www.atnf.csiro.au/people/mcalabre/WCS/

• CMake: http://www.cmake.org/download/ (they also offer binaries, check this
out first)

3 Install phy++ and gencat
The rest is a little bit harder, but not that much. Thanks to CMake, the installing process
is the same on all computers. In the following, I will assume that you have a directory
somewhere on your computer where you keep all your programming related stuff (e.g.,
the source code of TPHOT if you have tried to compile it).

1. Download the following archives and extract them inside this directory:

• https://github.com/cschreib/phypp/archive/master.tar.gz

• https://github.com/cschreib/gencat/archive/master.tar.gz

• https://github.com/cschreib/filter-db/archive/master.tar.gz

This bash script will do that for you:

wget https://github.com/cschreib/phypp/archive/master.tar.gz
tar -xvzf master.tar.gz && rm master.tar.gz
wget https://github.com/cschreib/gencat/archive/master.tar.gz
tar -xvzf master.tar.gz && rm master.tar.gz
wget https://github.com/cschreib/filter-db/archive/master.tar.gz
tar -xvzf master.tar.gz && rm master.tar.gz

In the end, this should create three directories:

filter-db-master
gencat-master
phypp-master
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2. Open a terminal and navigate to the phypp-master directory. Then, if you are using
cfitsio and WCSlib from your package manager, run the following commands:

mkdir build && cd build
cmake ../

If instead you have installed one of these two libraries by hand, in a non-standard
directory, you have to provide this directory to the CMake script. This is done by
replacing the command :

mkdir build && cd build
cmake ../ -DWCSLIB_ROOT_DIR=... -DCFITSIO_ROOT_DIR=...

The “...” have to be replaced by the actual directory in which each library was in-
stalled. For example, if you have installed cfitsio in the /opt/local/share/cfitsio
directory, then the “..." after -DCFITSIO_ROOT_DIR in the above command has to be
replaced by "opt/local/share/cfitsio.

If all goes well, this will configure the phy++ library and prepare it for installation.
The script will most likely warn you about missing dependencies, but this is ok since
none of these are needed for gencat. Just make sure that cfitsio and WCSlib are
found correctly, then install the library with the following command:

sudo make install
source ~/.phypprc

3. Using the terminal, navigate now inside the gencat-master directory. Similarly, run
the following commands:

mkdir build && cd build
cmake ../

This will generate an error if, somehow, there was an issue in the installation of the
phy++ library. Else, this will configure gencat and make it ready to be built. Finally,
run the last command:

make install

The gencat binary will be created in ../bin. See, not that hard!
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4 Making sure everything works
Navigate into the gencat-master/bin directory and call:

./gencat verbose maglim=27 filter_db=../../filter-db-master/db.dat

This will take a few seconds to run. In the end, you should get something like:

note: initializing filters...
note: 15 optical bands and 8 IR bands
note: initializing redshift bins...
note: min dz: 0.05, max dz: 0.773951
note: 36 redshift slices
note: estimating redshift-dependend mass limit...
note: will generate masses from as low as 4.56944, up to 12
note: reading mass functions...
note: found 10 redshift bins and 181 mass bins
note: generating redshifts...
note: generated 50142 galaxies
note: generating masses...
note: generating morphology...
note: generating SFR...
note: assigning optical SEDs...
[--------------------------------------------------] 900 100%, 285ms elapsed, 0ns left, 285ms total
[--------------------------------------------------] 900 100%, 304ms elapsed, 0ns left, 304ms total
note: assigning IR SED...
note: computing fluxes...
note: computing optical fluxes...
[--------------------------------------------------] 50142 100%, 8s elapsed, 0ns left, 8s total
[--------------------------------------------------] 49883 100%, 8s elapsed, 0ns left, 8s total
note: computing IR fluxes...
[--------------------------------------------------] 50142 100%, 5s elapsed, 0ns left, 5s total
note: generating sky positions...
[--------------------------------------------------] 36 100%, 1s elapsed, 0ns left, 1s total
note: saving catalog...

Also, a file called gencat-2015xxxx.fits (e.g., for me it was gencat-20150323.fits)
weighting about 20MB will be created in the same directory. This is the output catalog,
in FITS format. You can open it in IDL to check its content with the following IDL com-
mand:

; Load the catalog
cat = mrdfits(’gencat-2015xxxx.fits’, 1)
; Look at its content
help, cat, /str
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; Then do some plots
plot, cat.z, cat.m, psym=3, xtit=’redshift’, ytit=’stellar mass’

There there remain to test the program that will tranlsate this catalog into a Skymaker-
compatible catalog, one per band. Try:

./make_skymaker gencat-2015xxxx.fits band=f160w out=sky-f160w.cat

This should produce no output in the terminal, but create two files in the same directory,
sky-f160w.cat, which is the Skymaker catalog, and sky-f160w-hdr.txt, which is the
WCS header to feed to Skymaker.
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Abstract

Context. The advent of deep multiwavelength extragalactic surveys has led to the necessity for advanced and fast
methods for photometric analysis. In fact, codes which allow analyses of the same regions of sky observed at different
wavelengths and resolutions are becoming essential to thoroughly exploit current and future data. In this context, a
key issue is the confusion (i.e. blending) of sources in low resolution images.
Aims. We present t-phot, a publicly available software package developed within the astrodeep project. t-phot is
aimed at extracting accurate photometry from low resolution images, where the blending of sources can be a serious
problem for the accurate and unbiased measurement of fluxes and colours.
Methods. t-phot can be considered as the next generation to tfit, providing significant improvements over and above
it and other similar codes (e.g. convphot). t-phot gathers data from a high resolution image of a region of the sky,
and uses this information (source positions and morphologies) to obtain priors for the photometric analysis of the lower
resolution image of the same field. t-phot can handle different types of datasets as input priors: namely, i) a list of
objects that will be used to obtain cutouts from the real high resolution image; ii) a set of analytical models (as .fits
stamps); iii) a list of unresolved, point-like sources, useful e.g. for far infrared wavelength domains.
Results. By means of simulations and analysis of real datasets, we show that t-phot yields accurate estimations of
fluxes within the intrinsic uncertainties of the method, when systematic errors are taken into account (which can be
done thanks to a flagging code given in the output). t-phot is many times faster than similar codes like tfit and
convphot (up to hundreds, depending on the problem and the method adopted), whilst at the same time being more
robust and more versatile. This makes it an optimal choice for the analysis of large datasets. When used with the same
parameter sets as for tfit it yields almost identical results (albeit in a much shorter time), but in addition we show
how the use of different settings and methods significantly enhances the performance.
Conclusions. t-phot proves to be a state-of-the-art tool for multiwavelength optical to FIR image photometry. Given its
versatility and robustness, t-phot can be considered the preferred choice for combined photometric analysis of current
and forthcoming extragalactic imaging surveys.

Key words. Galaxy, photometry, multiwavelength, software

? t-phot is publicly available for downloading from
www.astrodeep.eu/t-phot/ .
?? Scottish Universities Physics Alliance

1. Introduction

Combining observational data from the same regions of the
sky in different wavelength domains has become common
practice in the past few years (e.g. Agüeros et al. 2005;
Obrić et al. 2006; Grogin et al. 2011, and many oth-
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E. Merlin et al.: t-phot

Figure 1. A schematic representation of the PSF-matched algorithm implemented in t-phot. Top: two objects are
clearly detected and separated in the high resolution detection image (blue line). The same two objects are blended
in the low resolution measurement image and have different colors (red line). Middle: the two objects are isolated in
the detection image and are individually smoothed to the PSF of the measurement image, to obtain normalized model
templates. Bottom: the intensity of each object is scaled to match the global profile of the measurement image. The
scaling factors are found with a global χ2 minimisation over the object areas. Image from De Santis et al. (2007).

ers). However, the use of both space-based and ground-
based imaging instruments, with different sensitivities,
pixel scales, angular resolutions, and survey depths, raises
a number of challenging difficulties in the data analysis pro-
cess.

In this context, it is of particular interest to obtain de-
tailed photometric measurements for high redshift galaxies
in the near infrared (NIR; corresponding to rest-frame op-
tical) and far infrared (FIR) domains. In particular, great
attention must be paid to bandpasses containing spectral
features which allows for thorough physical investigation
of the sources, to disentangle degenerate observational fea-
tures and to obtain crucial clues to the understanding of the
galactic physics (e.g. Daddi et al. 2004; Fontana et al. 2009).
For example, at z > 3 photometry longward of H-band is
needed to locate and measure the size of the Balmer break.
A passive galaxy at z ' 6 (having the Balmer break lying
longward of theK-band) can haveH band and 3.6µm fluxes
compatible with e.g. a star forming, dusty galaxy at z ' 1,
and K−band photometry is necessary to disentangle the
degeneracy. However, the limited resolution of the ground
based K−band observations can impose severe limits on
the reliability of traditional aperture or even PSF-fitting
photometry. Also, IRAC photometry is of crucial impor-
tance to obtain reliable photometric redshifts for red and
high-z sources, and to derive robust stellar mass estimates.

To address this, a high resolution image (HRI), obtained
e.g. from the Hubble Space Telescope in the optical do-
main, can be used to retrieve detailed information on the
positions and morphologies of the sources in a given re-
gion of the sky. Such information can be subsequently used
to perform the photometric analysis of the lower resolu-
tion image (LRI), using the HRI data as priors. However,
simply performing aperture photometry on the LRI at the
positions measured in the HRI can be dramatically affected
by neighbour contamination for reasonably sized apertures.
On the other hand, performing source extraction on both
images and matching the resulting catalogs is compro-

mised by the inability to deblend neighbouring objects,
and may introduce significant inaccuracies in the cross-
correlation process. PSF-matching techniques that degrade
high-resolution data to match the low resolution data dis-
card much of the valuable information obtained in the HRI,
reducing all images to the “lowest common denominator”
of angular resolution. Moreover, crowded-field, PSF-fitting
photometry packages such as daophot (Stetson 1987) per-
form well if the sources in the LRI are unresolved, but are
unsuitable for analysis of even marginally resolved images
of extragalactic sources.

A more viable approach consists of taking advantage of
the morphological information given by the HRI, to obtain
high resolution cutouts or models of the sources. These pri-
ors can then be degraded to the resolution of the LRI using
a suitable convolution kernel, constructed by matching the
PSFs of the HRI and of the LRI. Such low resolution tem-
plates, normalized to unit flux, can then be placed at the
positions given by the HRI detections, and the multiplica-
tive factor that must be assigned to each model to match
the measured flux in each pixel of the LRI will give the
measured flux of that source. Such an approach, although
relying on some demanding assumptions as described in
the following Sections, has proven to be efficient. It has
been implemented in such public codes as tfit (Laidler
et al. 2007) and convphot (De Santis et al. 2007), and
has already been utilized successfully in previous studies
(e.g. Guo et al. 2013; Galametz et al. 2013).

In this paper we describe a new software package, t-
phot, developed at INAF-OAR as part of the astrodeep
project1. t-phot can be considered as a new, largely im-
proved version of tfit, supplemented with many of the
features of convphot. Moreover, it adds many important

1 astrodeep is a co-ordinated and comprehensive program of
i) algorithm/software development and testing; ii) data reduc-
tion/release, and iii) scientific data validation/analysis of the
deepest multi-wavelength cosmic surveys. To get more informa-
tion, visit http://astrodeep.eu .
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new options, including the possibility of adopting differ-
ent types of priors (namely, real images, analytical mod-
els, or point-sources). In particular, it is possible to use
t-phot on FIR and sub-millimetric (sub-mm) datasets, as
a competitive alternative to the existing dedicated software
such as FastPhot (Béthermin et al. 2010) and DesPhot
(Roseboom et al. 2010; Wang et al. 2014). This makes t-
phot a versatile tool, suitable for the photometric analysis
of a very broad range of wavelengths from UV to sub-mm.

t-phot is a robust and easy-to-handle code, with a
precise structural architecture (a Python envelope calling
C/C++ core codes) in which different routines are encap-
sulated, implementing various numerical/conceptual meth-
ods, to be chosen by simple switches in a parameter file.
While a standard default “best choice” usage mode is pro-
vided and suggested, the user is allowed to select their own
preferred way of obtaining their dataset.

One of the main advantages of t-phot is a significant
saving of computational time with respect to both tfit and
convphot (see Sect. 4). This has been achieved with the
use of fast C modules and an efficient structural arrange-
ment of the code. In addition to this, we demonstrate how
different choices of parameters influence the performace,
and can be optimized to significantly improve the final re-
sults with respect to e.g. tfit.

The plan of the paper is as follows. Sect. 2 provides
a general introduction to the code, its mode of operation
and its algorithms. Sect. 3 presents a comprehensive set of
tests, based on both simulated and real datasets, to assess
the performance of the code and to fully illustrate its ca-
pabilities and limitations. Sect. 4 briefly discusses the com-
putational performances of t-phot and provides some ref-
erence computational timescales. Finally, in Sect. 5 the key
features of t-phot are summarized, and outstanding issues
and potential complications are briefly discussed.

2. General description of the code

As described above, t-phot uses spatial and morphologi-
cal information gathered from a HRI to measure the fluxes
in a LRI. To this aim, a linear system is built and solved
via matricial computing, minimizing the χ2 (in which the
numerically determined fluxes for each detected source are
compared to the measured fluxes in the LRI, summing the
contributions of all pixels). Moreover, the code produces a
number of diagnostic outputs and allows for an iterative
re-calibration of the results. Fig. 1 shows a schematic de-
piction of the basic PSF-matched fitting algorithm used in
the code.

As HRI priors t-phot can use i) real cutouts of sources
from the HRI, ii) models of sources obtained e.g. with
Galfit or similar codes, iii) a list of coordinates where
PSF-shaped sources will be placed; or a combination of
these three types of priors.

For a detailed technical description of the mode of oper-
ation of the code, we refer the reader to the Appendix and
to the documentation included in the downloadable tarball.
Here, we will briefly describe its main features.

2.1. Pipeline

The pipeline followed by t-phot is outlined in the flowchart
given in Fig. 2. The following paragraphs give a short de-
scription of the pipeline.

2.1.1. Input

The input files needed by t-phot vary depending on the
type(s) of priors used.

If “true” high-resolution priors are used, e.g. for opti-
cal/NIR ground-based or IRAC measurements using HST
cutouts, t-phot needs:

– the detection, high resolution image (HRI) in .fits for-
mat;

– the catalog of the sources in the HRI, obtained e.g. using
SExtractor or similar codes (the required format is
described in Appendix A);

– the segmentation map of the HRI, in .fits format,
again obtained e.g. using SExtractor or similar
codes, having the value of the id of each source in the
pixels belonging to it, and zero everywhere else;

– a convolution kernel K, in the format of a .fits image
or of a .txt file, matching the PSFs of the HRI and the
LRI so that PSFLRI = K ∗ PSFHRI (∗ is the symbol
for convolution). The kernel must have the HRI pixel
scale.

If analytical models priors are used as priors (e.g.
Galfit models), t-phot needs:

– the stamps of the models (one per object, in .fits for-
mat);

– the catalog of the models (the required format is de-
scribed in Appendix A);

– the convolution kernel K matching the PSFs of the HRI
and the LRI, as in the previous case.

If models have more than one component, one separate
stamp per component, and catalogs for each component
are needed (e.g. one catalog for bulges and one catalog for
disks).

If unresolved, point-like priors are used, t-phot needs:

– the catalog of positions (the required format is described
in Appendix A);

– the LRI PSF, in the LRI pixel scale.

In this case, a potential limitation to the reliability of
the method is given by the fact that the prior density usu-
ally needs to be optimised with respect to FIR/sub-mm
maps, as discussed e.g. in Shu et al. (2015, in preparation)
and Elbaz et al. (2011) (see also Wang et al. 2015; Bourne
et al. 2015, in preparation). The optimal number of priors
turns out to be around 50-75% of the numbers of beams in
the map. The key problem is to identify which of the many
potential priors from e.g. an HST catalogue one should use.
This is a very complex issue and we do not discuss it in this
paper.

If mixed priors are used, t-phot obviously needs the
input files corresponding to each of the different types of
priors in use.

Finally, in all cases t-phot needs

– the measure LRI, background subtracted (see next para-
graph), in .fits format, with the same orientation as
the HRI (i.e., no rotation allowed); the pixel scale can be
equal to, or an integer multiple of, the HRI pixel scale,
and the origin of one pixel must coincide; it should be in
surface brightness units (e.g. counts/s/pixel, or Jy/pixel
for FIR images, and not PSF-filtered);
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Figure 2. Schematic representation of the workflow in t-phot.
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Table 1. The input files needed by t-phot for different settings. See text for details.

– the LRI RMS map, in .fits format, with the same
dimensions and WCS of the LRI.

Table 1 summarizes the input requirements for the dif-
ferent choices of priors just described.

All the input images must have the following key-
words in their headers: CRPIXn, CRVALn, CDn n, CTYPEn
(n=1,2).

2.1.2. On the background subtraction

As already mentioned, the LRI must be background sub-
tracted before being fed to t-phot. This is of particular
interest when dealing with FIR/sub-mm images, where the
typical standard is to use zero-mean. To estimate the back-
ground level in optical/NIR images, one simple possibility
is to take advantage of the option to fit point-like sources
to measure the flux for a list of positions chosen to fall
within void regions. The issue is more problematic in such
confusion-limited FIR images where there are no empty sky
regions. In such cases, it is important to separate the fitted
sources (those listed in the prior catalogue) from the back-
ground sources, which contribute to a flat background level

behind the sources of interest. The priors should be chosen
so that these two populations are uncorrelated. The aver-
age contribution of the faint background source population
can then be estimated e.g. by (i) injecting fake sources into
the map and measuring the average offset (output-input)
flux; or (ii) measuring the modal value in the residual im-
age after a first pass through t-phot (see e.g. Bourne et al.
2015, in preparation).

2.1.3. Stages

t-phot goes through “stages”, each of which performs a
well defined task. The best results are obtained performing
two runs (“pass 1” and “pass 2”), the second one using
locally registered kernels, produced during the first one.
The possible stages are the following:

– priors: creates/organizes stamps for sources as listed
in the input priors catalog(s);

– convolve: convolves each high resolution stamp with
the convolution kernel K to obtain models (“tem-
plates”) of the sources at LRI resolution. The templates
are normalized to unit total flux. If the pixel scale of the
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images is different, transforms templates accordingly.
Convolution is preferably performed in Fourier space,
using fast FFTW3 libraries; however the user can choose
to perform it in real pixel space, ensuring a more accu-
rate result at the expense of a much slower computation.

– positions: if an input catalog of unresolved sources is
given, creates the PSF-shaped templates listed in it, and
merges it with the one produced in the convolve stage;

– fit: performs the fitting procedure, solving the lin-
ear system and obtaining the multiplicative factors to
match each template flux with the measured one;

– diags: selects the best fits2 and produces the final for-
matted output catalogs with fluxes and errors, plus
some other diagnostics, see Sect. 2.3;

– dance: obtains local convolution kernels for the second
pass; it can be skipped if the user is only interested in
a single pass run;

– plotdance: plot some diagnostics for the dance stage; it
can be skipped for any other purpose than diagnostics;

– archive: archives all results in a subdirectory whose
name is based on the LRI and the chosen fitting method
(to be only used at the end of the second pass).

The exact pipeline followed by the code is specified by a
keyword in the input parameter file. See the Appendix for
a more detailed description of the whole procedure.

2.1.4. Solution of the linear system

The search for the LRI fluxes of the objects detected in the
HRI is performed by creating a linear system∑

m,n

I(m,n) =
∑
m,n

N∑
i

FiPi(m,n) (1)

where m and n are the pixel indexes, I contains the pixel
values of the fluxes in the LRI, Pi is the normalized flux
of the template for the i-th objects in the (region of the)
LRI being fitted, and Fi is the multiplicative scaling factor
for each object. In physical terms, Fi represent the flux of
each object in the LRI (that is, it is the unknown to be
determined).

Once the normalized templates for each object in the
(region of interest within the) LRI have been generated
during the convolve stage, the best fit to their fluxes can
be simultaneously derived by minimizing a χ2 statistic,

χ2 =

[∑
m,n I(m,n)−M(m,n)

σ(m,n)

]2
(2)

where m and n are the pixel indexes,

M(m,n) =

N∑
i

FiPi(m,n) (3)

and σ is the RMS value in the pixel.
The output quantities are the best-fit solutions of the

minimization procedure, i.e. the Fi parameters and their
relative errors. They can be obtained resolving the linear
system

∂χ2

∂Fi
= 0 (4)

2 Each source is fitted more than once if an arbitrary grid is
used, as in the standard tfit approach.

for i = 0, 1, ..., N .
In practice, the linear system can be rearranged into a

matrix equation,
AF = B (5)

where the matrix A contains the coefficients PiPj/σ
2, F

is a vector containing the fluxes to be determined, and B
is a vector given by IiPi/σ

2 terms. The matrix equation is
solved via one of three possible methods as described in the
next subsection.

2.1.5. Fitting options

t-phot allows for some different options to perform the fit:

– three different methods for solving the linear system
are implemented: namely, the LU method (used by de-
fault in tfit); the Cholesky method; and the Iterative
Biconjugate Gradient method (used by default in con-
vphot). They prove to yield similar results, the LU
method being slightly more stable and faster;

– a threshold can be imposed so that only pixels with a
flux higher than it will be used in the fitting procedure
(see Sect. 3.1.4);

– sources fitted with a large, unphysical negative flux
(fmeas < −3σ, where σ is their nominal error, see be-
low) can be excluded from the fit, and in this case a new
fitting loop will be performed without considering these
sources.

The fit can be performed (i) on the entire LRI as a
whole, producing a single matrix containing all the sources
(this is the method adopted in convphot); (ii) subdividing
the LRI into an arbitrary grid of (overlapping) small cells,
perfoming the fit in each of such cells separately, and then
choosing the “best” fit for each source, using some conve-
nient criteria to select it (because sources will be fitted more
than once, if the cells overlap. This is the method adopted
in tfit); (iii) ordering objects by decreasing flux, building
a cell around each source including all its potential contam-
inants, solving the problem in that cell and assigning to the
source the obtained flux (cells-on-objects method; see the
Appendix for more details).

While the first method is the safest and more accurate
because it does not introduce any bias or arbitrary modifi-
cations, it may often be unfeasible to process at once large
or very crowded images. Potentially large computational
time saving is possible using the cells-on-objects method,
depending on the level of blending/confusion in the LRI:
if the latter is very high, most sources will be overlapping,
so the cells will end up being very large. This ultimately
results in repeating many times the fit on regions with di-
mensions comparable to the whole image (a check is imple-
mented in the code, to automatically change the method
from cells-on-objects to single fit if this is the case). If the
confusion is not dramatic, a saving in computational time
up to two orders of magnitude can be achieved. The results
obtained using the cells-on-objects method prove to be vir-
tually identical to those obtained with a single fit on the
whole image (see Sect. 3.1.2). On the other hand, using the
arbitrary cells method is normally the fastest option, but
can introduce potentially large errors to the flux estimates,
due to wrong assignments of peripheral flux from sources
located outside a given cell to sources within the cell (again,
see Sect. 3.1.2 and Appendix).
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2.1.6. Post-fitting stages: kernel registration

After the fitting procedure is completed, t-phot will pro-
duce the final output catalogs and diagnostic images (see
2.3). Among these, a model image is obtained by adding all
the templates, scaled to their correct total flux after fitting,
in the positions of the sources. This image will subsequently
be used if a second pass is planned, during a stage named
dance: a list of positional shifts is computed, and a set of
shifted kernels are generated and stored. The dance stage
consists of three conceptual steps:

– the LRI is divided into cells of given size (specified by
the keyword dzonesize) and a linear ∆x,∆y shift is
computed within each cell, cross-correlating the model
image and the LRI in the considered region3;

– interpolated shifts are computed for the regions where
the previous registration process gives spuriously large
shifts, i.e. above the given input threshold parameter
maxshift;

– the new set of kernels is created using the computed
shifts to linearly interpolate their positions, while cat-
alogs reporting the shifts and the paths to kernels are
produced.

2.1.7. Second pass

The registered kernels can subsequently be used in the sec-
ond pass run, to obtain more astrometrically precise results.
t-phot automatically deals with them provided the correct
keyword is given in the parameter file. If unresolved priors
are used, the list of shifts generated in the dance stage will
be used by the positions routine during the second pass
to produce correctly shifted PSFs and generate new tem-
plates.

2.2. Error budget

During the fitting stage, the covariance matrix is con-
structed and output. Errors for each source are assigned
as the square root of the diagonal element of the covari-
ance matrix relative to that source. It must be pointed out
that using any cell method for the fitting, rather the single
fitting option, will affect this uncertainty budget, since a
different matrix will be constructed and resolved in each
cell.

It is important to stress that this covariance error bud-
get is a statistical uncertainty, relative to the RMS fluc-
tuations in the measurement image, and is not related to
any possible systematic error. The latter can instead be
estimated by flagging potentially problematic sources, to
be identified separately from the fitting procedure. There
can be different possible causes for systematic offsets of the
measured flux with respect to the true flux of a source.
t-phot assigns the following flags:

– +1 if the prior has saturated or negative flux;
– +2 if the prior is blended (the check is performed on the

segmentation map);
– +4 if the source is at the border of the image (i.e. its seg-

mentation reaches the limits of the HRI pixels range).

3 FFT and direct cross-correlations are implemented, the lat-
ter being the preferred default choice because it gives more pre-
cise results at the expense of a slightly slower computation.

2.3. Description of the output

t-phot output files are designed to be very similar in for-
mat to those produced by tfit. They provide:

– a “best” catalog containing the following data, listed
for each detected source (as reported in the catalog file
header):
– id;
– x and y positions (in LRI pixel scale and reference

frame, FITS convention where first pixel is centered
at 1,1);

– id of the cell in which the best fit has been obtained
(only relevant for arbitrary grid fitting method);

– x and y positions of the object in the cell and dis-
tance from the center (always equal to 0 if the cells-
on-objects method is adopted);

– fitted flux and its uncertainty (square root of the
variance, from the covariance matrix). These are the
most important output quantities;

– flux of the object as given in the input HRI catalog
or, in the case of point-sources priors, measured flux
of the pixel at the x, y position of the source in the
LRI;

– flux of the object as determined in the cutout stage
(it can be different to the previous one, e.g. if the
segmentation was dilated); in case of point-sources
priors, measured flux of the pixel at the x, y position
of the source in the LRI;

– flag indicating a possible bad source as described in
the previous subsection;

– number of fits for the object (only relevant for arbi-
trary grid fitting method, 1 in all other cases).

– id of the object having the largest covariance with
the present source;

– covariance index, i.e. the ratio of the maximum co-
variance to the variance of the object itself; this num-
ber can be considered an indicator of the reliability
of the fit, since large covariances often indicate a
possible systematic offset in the measured flux of
the covarying objects (see Sect. 3.1.2).

– two catalogs reporting statistics for the fitting cells and
the covariance matrices (they are described in the doc-
umentation);

– the model .fits image, obtained as a collage of the
templates, as already described;

– a diagnostic residual .fits image, obtained by sub-
tracting the model image from the LRI;

– a subdirectory containing all the low resolution model
templates;

– a subdirectory containing the covariance matrices in
graphic (.fits) format;

– a few ancillary files relating to the shifts of the kernel
for the second pass and a subdirectory containing the
shifted kernels.

All fluxes and errors are output in units consistent with
the input images.

Figs. 3, 4 and 5 show three examples of t-phot appli-
cations on simulated and real data, using the three different
options for priors.

6



E. Merlin et al.: t-phot

Figure 3. Example of the results of a standard t-phot run using extended priors. Left to right: HRI (FWHM=0.2′′),
LRI (FWHM=1.66′′), and residuals image for a simulated dataset. LRI and residual image are on the same grayscale.

Figure 4. Example of the results of a standard t-phot run using point-source priors. Left to right: LRI (FWHM=25”)
and residuals image (same grayscale) for a simulated dataset.

Figure 5. Example of the results of a standard t-phot run using analytical priors. Left to right: CANDELS COSMOS
H-band (HRI), R-band (LRI) and residuals image obtained using Galfit two-component models. LRI and residual
image are on the same grayscale.

3. Validation

To assess the performance of t-phot we set up an extensive
set of simulations, aimed at various different and comple-
mentary goals.

We used SkyMaker (Bertin 2009), a public software
tool, to build synthetic .fits images. The code ensures di-
rect control on all the observational parameters (the mag-
nitude and positions of the objects, their morphology, the
zero point magnitude, the noise level, and the PSF). Model
galaxies are built by summing a de Vaucouleurs and an
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Figure 6. Accuracy check on idealized PSF-shaped objects. 100 realizations of the same image containing two PSF-
shaped objects at varying positions and signal-to-noise ratios have been produced and the fluxes have been measured
with t-phot. In each row, the left image shows one of the 100 realizations with the largest considered separation (10
pixels). On the right, the first panel refers to the central object, and the second (on the right) to the shifted object; central
signal-to-noise (S/Ncentr) ratios are, from top to bottom, 100-100, 100-10, and 100-1 for the two objects respectively. In
each panel, as a function of the separation interval between the two sources the faint grey points show each of the 100
flux measurements (in relative difference with respect to the “true” input flux), the red diamonds are the averages of
such 100 measurements, the red crosses show the nominal error given by the covariance matrix in t-phot and the green
dots the standard deviation of the 100 measurements. See text for more details.

exponential light profile in order to best mimick a realis-
tic distribution of galaxy morphologies. These models are
generated using a variety of bulge-to-total light ratios, com-
ponent sizes and projection angles.

All tests have been run using ideal (i.e. synthetic and
symmetric) PSFs and kernels.

Moreover, we also perform tests on real datasets taken
from the CANDELS survey (in these cases using real PSFs).

Some of the tests were performed using both t-phot
and tfit, to cross-check the results, ensuring the perfect
equivalency of the results given by the two codes when used
with the same parameter sets, and showing how appropriate
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Figure 7. Effects of segmentation on the measured flux of two isolated objects with the same flux and signal-to-noise
ratio (two cases with different relative separations of 40 and 120 pixels). The shades and dimensions of the dots is a
function of the radius of the segmentation, with darker and smaller dots corresponding to smaller segmentations. See
text for more details.

settings of the t-phot parameters can ensure remarkable
improvements.

For simplicity, here we only show the results from a
restricted selection of the tests dataset, which are represen-
tative of the performance of t-phot in standard situations.
The results on the other simulations globally resemble the
one we present, and are omitted for the sake of conciseness.

3.1. Code performance and reliability on simulated images

3.1.1. Basic tests

As a first test, we checked the performance of the basic
method by measuring the flux of two PSF-shaped synthetic
sources, with varying separation and signal to noise ra-
tios. One hundred realizations with different noise maps of
each parameter set were prepared, and the averages on the
measured fluxes were computed. The aim of this test was
twofold: on the one hand, to check the precision to which
the fitting method can retrieve “true” fluxes in the sim-
plest possible case - two sources with ideal PSF shape; on
the other hand, to check the reliability of the nominal error
budget given by the covariance matrix, comparing it to the
real RMS of the 100 measurements. Fig. 6 shows three ex-
amples of the setup and the results of this test. Clearly, in
both aspects the results are reassuring: the average of the
100 measurement (red diamonds) is always in very good
agreement with the “true” value, with offset in relative er-
ror always well under the 1/(S/N)centr limit ((S/N)centr is
the value of the signal to noise ratio in the central pixel of
the source, corresponding to roughly one third of the total
S/N); and the nominal error (red crosses) given by the co-
variance matrix is always in good agreement with the RMS
of the 100 measurements (red circles).

When dealing with extended objects rather than with
point-like sources, one must consider the additional prob-
lem that the entire profile of the source cannot be measured
exactly, because the segmentation is limited by the lowest
signal-to-noise isophote. The extension of the segmentation
therefore comes to play a crucial role and defining it cor-

rectly is a very subtle issue. Simply taking the isophotal
area as reported by SExtractor as ISOAREA often under-
estimates the real extension of the objects. Accordingly, the
segmentation of the sources should somehow be enlarged
to include the faint wings of sources. To this aim, specific
software called Dilate has been developed at OAR and
used in the CANDELS pipeline for the photometric anal-
ysis of GOODS-S and UDS IRAC data (Galametz et al.
2013). Dilate enlarges the segmentation by a given factor,
depending on the original area; it has proven to be rea-
sonably robust in minimizing the effects of underestimated
segmentated areas.

Fig. 7 shows the effects of artificially varying the dimen-
sions of the segmentation relative to two bright, extended
and isolated sources in a simulated HRI, on the flux mea-
sured for that source in a companion simulated LRI. Note
how enlarging the segmented area normally results in larger
measured fluxes, because more and more light from the
faint wings of the source are included in the fit. However,
beyond a certain limit the measurements begin to lose ac-
curacy due to the inclusion of noisy, too low signal-to-noise
regions (which may cause a lower flux measurement).

In principle, using extended analytical models rather
than real high resolution cutouts should cure this problem
more efficiently, because models have extended wings which
are not signal-to-noise limited. Tests are ongoing to check
the performance of this approach, and will be presented in
a forthcoming paper.

3.1.2. Tests on realistic simulations

The next tests were aimed at investigating less idealized sit-
uations, and have been designed to provide a robust analy-
sis of the performance of the code on realistic datasets. We
used the code GenCat (Schreiber et al. 2015, in prepa-
ration) to produce mock catalogs of synthetic extragalactic
sources, with reasonable morphological features and flux

9



E. Merlin et al.: t-phot

Figure 8. Accuracy of the flux determination in a simulation containing non-overlapping, PSF-shaped sources and
“perfect” detection. Relative measured flux difference (fmeas − ftrue)/ftrue is plotted versus logarithm of the input flux
ftrue, for a simulated image populated with PSF-shaped sources (FWHM=1.66′′). Each dot corresponds to a single
source, with different symbols and colors referring to various diagnostics as explained in the legend and in the colorbar.
The black solid line is the average in bins, the yellow shade is the standard deviation. The vertical dashed line shows
the limiting flux at 1σ, f = 1. The inner panel shows a magnification of the brighter end of the distribution. The fit has
been performed on the whole image at once. See text for more details.

distribution4. Then, a set of images were produced us-
ing such catalogs as an input for SkyMaker. A “detec-
tion” HRI mimicking an HST H band observation (FWHM
= 0.2′′) was generated from the GenCat catalog, using
output parameters to characterize the objects’ extended
properties. Then a set of measure LRI’s were produced:
a first one was populated with PSF-shaped sources, having
FWHM = 1.66” (the typical IRAC-ch1/ch2 resolution, a
key application for t-phot), while other LRIs were created
from the input catalog, mimicking different ground-based
or IRAC FWHMs. Finally, we created another HRI cat-
alog removing all of the overlapping sources5. This “non-
overlapping” catalog was used to create parallel detection
and measurement images, to obtain insight into the com-

4 GenCat is another software package developed within the
astrodeep project. It uses GOODS-S CANDELS statistics to
generate a realistic distribution of masses at different redshifts,
for two populations of galaxies (namely, active and passive)
using observed mass-functions. It then estimates all the other
physical properties using statistical recipes: morphology, star
formation rate, attenuation, optical colors, and sky-projected
position.

5 We proceeded as follows. First, we created a “true” segmen-
tation image using the input catalog and assigning to each object
all the pixels in which the flux was 1.005 × fbackground. Then,
starting from the beginning of the list, we included each source
in the new catalog if its segmented area did not overlap the
segmented area of another already inserted source.

plications given by the presence of overlapping priors. In
all these images, the limiting magnitude was set equal to
the assigned zero point, so that the limiting flux at 1σ is 1.
Also, the fits were always performed on the LRI as a whole,
if not otherwise specified.

Fig. 8 shows the results relative to the first test, i.e. the
fit on the image containing non-overlapping, PSF-shaped
sources, with a “perfect” detection (i.e. the prior catalog
contains all sources above the “true” detection limit), ob-
tained with a single fit on the whole image. The figure
shows the relative error in the measured flux of the sources,
(fmeas − ftrue)/ftrue, versus the log of the real input flux
ftrue; the different symbols refer to the flag assigned to each
object, while the color is a proxy for the covariance index,
as described in more detail in the next paragraph.

In this case, the only source of uncertainty in the mea-
surement is given by the noise fluctuations, which clearly
becomes dominant in the faint end of the distribution.
Looking at the error bars of the sources, which are given by
the nominal error assigned by t-phot from the covariance
matrix, one can see that almost all sources have measured
flux within 2σ from their “true” flux, with only strongly
covariant sources (covariance index ' 1, greener colors)
having |fmeas − ftrue|/ftrue > 1σ. The only noticeable ex-
ceptions are sources that have been flagged as potentially
unreliable, as described in Sect. 2.2. Also note how the av-
erage ∆f/f (solid black line) is consistent with zero down
to ftrue = S/N ' 0.63.
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Figure 9. Analysis of a small region including a strongly covarying group of sources. Upper left panel: one of the 100
realizations with different noise maps of the region. Upper right panel: “true” spatial position of all the sources in the
region (the color of the dots refer to the covariance index of the sources, as indicated in the colorbar, while their size is
proportional to their true flux). Bottom left panel: relative deviation of measured flux from the true flux for each source
in the region, as a function of their true magnitude (big dots show the average relative deviation, and their colors refer
to their covariance index as in the previous panel; green squares show the nominal uncertainty given by t-phot, to be
compared with the RMS of the distribution of the 100 measurements (diamonds); small grey dots are the single 100
measurements. Small inner panels show magnifications of regions of interest). Bottom right panel: each dot shows the
sum of the measured fluxes for each of the 100 realizations, and the average of this sum (red line) to be compared with
the “true” sum (blue line), showing that an overall consistency is guaranteed by the method. See text for more details.

Fig. 9 shows the analysis of a case study in which the
fluxes of a clump of highly convariant objects are measured
with poor accuracy, and some of the nominal uncertainties
are underestimated: a very bright source (ID 3386, mtrue =
21.17) shows a relative difference (fmeas−ftrue)/ftrue > 3σ.
To cast light on the reason for such a discrepancy, the re-
gion surrounding the object was replicated 100 times with
different noise realizations, and the results were analyzed
and compared. The upper panels show (left) one of the
100 measurement images and (right) the position of all the
sources in the region (many of which are close to the detec-
tion limit). The color code refers to the covariance index of
the sources. The bottom left panel shows the relative error
in the measured flux for all the sources in the region, with
the inner panels showing magnifications relative to the ob-
ject ID 3386 and to the bunch of objects with mtrue ∼ 26.5.
Looking at the colors of their symbols, many objects in the
region turn out to be strongly covariant. Indeed, while the
“bluer” sources in the upper part of the region all have co-
variant indexes lower than 0.5, the “greener” ones in the
crowded lower part all have covariance index larger than
1 (indeed larger than 2 in many cases). This means that
their flux measurements are subject to uncertainties not

only from noise fluctuations, but also from systematic er-
rors due to their extremely close and bright neighbors. As
clearly demonstrated here, the covariance index can give a
clue about which measurements can be safely trusted.

The bottom right panel gives the sum of the measured
fluxes of all sources in each of the 100 realizations (the blue
line is the true total flux and the red line is the mean of
the 100 measured total fluxes). It can be seen that the total
flux measured in the region is always consistent with the
expected true one to within ' 1% of its value.

The bottom line of this analysis is that, although it is
not possible to postulate a one-to-one relation (because in
mane cases sources having a large covariance index have a
relatively good flux estimate, see Fig. 8), the covariance in-
dex, together with the flagging code outputted by t-phot,
can give clues about the reliability of measured flux, and
should be taken into consideration during the analysis of
the data. Measurements relative to sources having covari-
ance index e.g. larger than 1 should be treated with caution.

In a subsequent more realistic test, we consid-
ered extended objects (including morphologies of objects
from the GenCat catalog, using FWHMHRI=0.2′′ and
FWHMLRI=1.66′′ and imposing mtrue,LRI=mtrue,HRI =

11
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Figure 10. Accuracy of the flux determination in a simulation containing extended objects, overlapping priors and
SExtractor detection. Top: relative flux difference (fmeas − finput)/finput versus logarithm of the input flux finput
for a simulated image populated with extended sources (FWHM=1.66′′). Symbols and colors are as in Fig. 8. The inner
panel shows a magnification of the brighter end of the distribution. The outlier marked with the open black circle,
ID=720, is shown in the bottom panel: left to right, HRI (FWHM=0.2′′), LRI, SExtractor segmentation map and
“true” segmentation map. The green circles show the object detected via SExtractor, while the blue cross shows its
“true” position. See text for more details.

mH160,GenCat for simplicity) and allowed for overlapping
priors. To be consistent with the standard procedure
adopted for real images, for this case we proceeded by pro-
ducing an SExtractor catalog and segmentation map,
which were then spatially cross-correlated with the “true”
input catalog. The results for this test are shown in Fig.
10. Even in this much more complex situation, the results
are reassuring: there is an overall good agreement between
measured and input fluxes for bright (S/N > 1) sources,
with only a few flagged objects clearly showing large de-
viations from the expected value. However, all fluxes are
measured ' 5% fainter than the true values (see the inner

box in the same Figure); this is very likely to be the effect
of the limited segmentation extension, as already discussed
in the previous Section. On the other hand, faint sources
tend to have systematically overestimated fluxes, arguably
because of contamination from undetected sources. To con-
firm this, we focus our attention on a single case study (the
source marked as ID 720) which shows a large discrepancy
from its true flux, but has a relatively small covariance in-
dex. An analysis of the real segmentation map shows how
in reality the detected object is a superposition of two dif-
ferent sources, which have been detected as a single one, so
that the measured flux is of course higher than expected.

12
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One should also note that the uncertainties on the measured
fluxes are smaller in this test, because there are fewer priors
(only the ones detected by SExtractor are now present),
implying a lower rank of the covariance matrix and a lower
number of detected neighbors blending in the LRI. This
causes a global underestimation of the errors.

3.1.3. Testing different fitting options: cell dimensions

We then proceeded to test the performance of the different
fitting techniques that can be used in t-phot. To this aim,
we repeated the fitting on the LRI, with different methods:
using a regular grid of cells of 100×100 pixels, a regular grid
of cells of 200×200 pixels, and the cells-on-objects method,
comparing the results with those from the fit of the whole
image at once. The results of the tests are shown in Figs.
11 and 12. The first figure compares the distributions of the
relative errors in measured flux for the runs performed on
the 100× 100 pixels grid, on the 200× 200 pixels grid, and
on the whole image at once. Clearly, using any regular grid
of cells worsens the results, as anticipated in Sect. 2.1.5.
Enlarging the sizes of the cells yields improvement, but
does not completely solve the problem. Note that the adop-
tion of an arbitary grid of cells of any dimension in princi-
ple is prone to the introduction of potentially large errors,
because (possibly bright) contaminating objects may con-
tribute to the brightness measured in the cell, without being
included as contributing sources. A mathematical sketch of
this issue is explained in the Appendix (and see also Sect.
3.2).

The second histogram compares the differences between
the fit on the whole image and the one with the cells-on-
objects method. Almost all the sources yield identical re-
sults with the two methods, within (fmeas− ftrue)/ftrue <
0.001. This proves how the cells-on-objects method can be
considered a reliable alternative to the single fit method.

Fig. 12 compares the HRI, the LRI, and the residual im-
ages obtained with the four methods and their distributions
of relative errors, showing quantitatively the difference be-
tween the analyzed cases.

In summary, it is clear that an incautious choice of cell
size may lead to unsatisfactory and catastrophic outcomes.
On the other hand, the advantages of using a single fit,
and the equivalence of the results obtained with the sin-
gle fit and the cells-on-objects technique, are evident. As
already anticipated, one should bear in mind that the cells-
on-objects method is only convenient if the overlapping of
sources is not dramatic, as in ground-based optical obser-
vations. For IRAC and FIR images, on the other hand,
the extreme blending of sources would cause the cells to be
extended over regions approaching the size of the whole im-
age, so that a single fit would be more convenient, although
often still CPU-time consuming.

3.1.4. Testing different fitting options: threshold fitting

As described in Sect. 2.1.5, t-phot includes the option to
impose a lower threshold on the normalized fluxes of tem-
plates so as to exclude from the fit low signal-to-noise pixels.
Fig. 13 shows a comparison of the relative errors obtained
with three different values of the THRESHOLD parameter:
t = 0, t = 0.5 and t = 0.9 (this means that only pixels
with normalized flux fnorm > t × fpeak in the convolved

template will be used in the fitting procedure). The differ-
ences are quite small, however a non-negligible global effect
can be noticed: all sources tend to slightly decrease their
measurement of flux when using a threshold limit. This
brings faint sources (generally overestimated without using
the threshold) closer to their “true” value, at the same time
making bright sources too faint. This effect deserves careful
investigation which is beyond the scope of this study, and
is postponed to a future paper.

3.1.5. Colors

A final test was run introducing realistic colors, i.e. assign-
ing fluxes to the sources in the LRI consistent with a re-
alistic SED (as output by GenCat), instead of imposing
them to be equal to the HRI fluxes. We took IRAC-ch1 as
a reference filter for the LRI, consistently with the chosen
FWHM of 1.66”. Furthermore, we allowed for variations
in the bulge-to-disc ratios of the sources to take into ac-
count possible effects of color gradients. We compared the
results obtained with t-phot with the ones obtained with
two alternative methods to determine the magnitudes of
the sources in the LRI: namely, SExtractor dual mode
aperture and MAG BEST photometry (with HRI as detection
image). The differences between measured and input mag-
nitudes in the LRI, mmeas-mtrue, are plotted in Fig. 14.
Clearly, t-phot ensures the best results, with much less
scattered measurements than both the other two methods,
and very few outliers.

3.2. Direct comparison with TFIT on real data

It is instructive to compare the results of a t-phot run on
real datasets already processed using previous releases of
the tfit package.

To address this, we compared the results of the
tfit CANDELS analysis on the UDS CANDELS I-band
(Galametz et al. 2013) with a t-phot run obtained using
the cells-on-objects method and different parameters in the
kernel registration stage.

Fig. 15 shows the histograms of the differences in the
photometric measurements between tfit and t-phot on
the same field (UDS Subaru I band) obtained using the
cells-on-objects method. The differences are evident. Many
sources end up with a substantially different flux, because
of the two cited factors (a better kernel registration and
the different fitting procedure). Note that the majority of
the sources have fainter fluxes with respect to the previ-
ous measurements, precisely because of the effect described
in Sect. 3.1.2: fitting using a grid of cells introduces sys-
tematic errors assigning light from sources which are not
listed in a given cells but overlap with it to the objects
recognized as belonging to the cell. To further check this
point, Fig. 16 shows some examples of the difference be-
tween the residuals obtained with tfit (official catalog) and
those obtained with this t-phot run using cells-on-objects
method, also introducing better registration parameters in
the dance stage. Clearly, the results are substantially differ-
ent, with many black spots (sources with spurious overesti-
mated fluxes) disappearing. Also, the registrations appear
to be generally improved.

13



E. Merlin et al.: t-phot

Figure 11. Accuracy of the flux determination. Top panel: for the same simulation described in Fig. 10, the histograms
show the results for three different fitting methods: regular grid 100×100 pixels (standard tfit approach), regular grid
200×200, single fit on the whole image. The small boxes show the extended wings of the histograms, magnified for better
viewing. The accuracy increases enlarging the cells and, reaches the best result with the single fit on the whole image.
Bottom panel: the histogram shows the relative measured flux difference between the single fit on the whole image and
the cells-on-objects method. Differences above 1% are very rare.

4. Computational times

As anticipated, t-phot ensures a large saving of compu-
tational times compared to similar codes like tfit and
convphot, when used with identical input parameters.
For example, a complete, double-pass run on the whole
CANDELS UDS field at once (I band;∼35000 prior sources;
LRI 30720×12800 = 400 million pixels; standard tfit pa-
rameters and grid fitting) is completed without memory
swaps in ca. 2 hours (i.e., 1 hour per pass) on a standard
workstation (Intel i5, 3.20 GHz, RAM 8 Gb). A com-
plete, double pass run on the GOODS-S Hawk-I W1 field
(∼17500 prior sources, LRI 10700×10600 = 100 millions
pixels, identical parameters) is completed in ∼20 minutes.
For comparison, tfit may require many hours (∼24) to

complete a single pass on this Hawk-I field on the same
machine. It must be said that tfit by default produces
cutouts and templates for all the sources in the HRI image;
selecting the ones belonging to the LRI field and inputting
an ad-hoc catalog would have reduced the computing time,
say by a factor of two (i.e., 11 hours for the a single pass).
It was not possible to process large images like the UDS
field in a single run, because of RAM memory failing. con-
vphot timings and memory problems are similar to the
tfit ones, although due to different causes (being written
in C, computation is generally faster, but it employs a slower
convolution method and the solution of the linear system
in performed as a single fit instead of grid fitting like in
tfit, being much more time consuming).
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Figure 12. Accuracy of the flux determination. For the same simulation described in Fig. 10, the plots show the results
for four different fitting methods. Top panel, left to right: HRI (FWHM=0.2′′), LRI (FWHM=1.66′′), residuals using a
regular grid of 100× 100 pixels cells (standard tfit approach), a regular grid of 200× 200 pixels cells, a single fit on the
whole image, and the cells-on-objects method. The spurious fluctuations in the last two panels are due to segmentation
inaccuracies, as in Fig. 10. Bottom panels, left to right and top to bottom: relative measured flux differences with respect
to true fluxes, same order as above. Note that the values of the covariance index are different in each case, because of
the varying sizes of the cells (and therefore of the relative matrix).

Adopting the cells-on-objects (Sect. 2.1.5) method in-
creases the computational time with respect to the tfit
standard cell approach, but it is still far more convenient
than the convphot standard single fit approach, and gives
nearly identical results.

Table 2 summarizes the computational times for an ex-
tended tests on a set of simulated images having different
detection depths (and therefore number of sources) and di-
mensions, with LRI FWHM=1.66”. The simulations have
been run on the same machine described above, using three
different methods: whole image fitting, cells-on-objects and
100× 100 pixels cells fitting.

5. Summary and conclusions

We have presented t-phot, a new software package devel-
oped within the astrodeep project. t-phot is a robust
and versatile tool, aimed at the photometric analysis of
deep extragalactic fields at different wavelengths and spa-
tial resolution, deconfusing blended sources in low resolu-
tion images.

t-phot uses priors obtained from a high resolution de-
tection image to obtain normalized templates at the lower
resolution of a measurement image, and minimizes a χ2

problem to retrieve the multiplicative factor relative to each
source, which is the searched quantity, i.e. the flux in the
LRI. The priors can be either real cutouts from the HRI, or
a list of positions to be fitted as PSF-shaped sources, or an-
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Figure 13. Effects of threshold fitting (Sect. 3.1.4). Mean relative error (black line) and standard deviation (yellow
shaded area) for three simulations with different threshold values (0.0, 0.5, 0.9). Only pixels with normalized flux higher
than the threshold values are included in the fit. Larger threshold values result in more accurate measurements for faint
sources, at the expense of a systematic underestimation of the flux for brighter ones.

Figure 14. Top: measured magnitude differences (mmeas − mtrue) versus “true” input magnitudes mtrue, for a
couple of simulated images populated with extended sources (HRI has FWHM=0.2′′ and HST Hband-like fluxes,
LRI has FWHM=1.66′′ and IRACch1-like fluxes), using three different methods: SExtractor dual-mode aperture,
SExtractor dual-mode “best”, and t-phot. Vertical lines show the 5σ (dashed) and 1σ (dotted) limits of the sim-
ulated LRI. Bottom: magnification of the top panel, showing only t-phot results, color-coded as a function of the
covariance index. See text for more details.

alytical 2-d models, or a mix of the three types. Different
options for the fitting stage are given, including a cells-
on-objects method which is computationally efficient while
yielding accurate results for relatively small FWHMs. t-
phot ensures a large saving of computational time as well
as increased robustness with respect to similar public codes
like its direct predecessors tfit and convphot. With an

appropriate choice of the parameter settings, greater accu-
racy is also achieved.

As a final remark, it should be pointed out that the anal-
ysis presented in this work deals with idealized situations,
namely simulations or comparisons with the performances
of other codes on real datasets. There are a number of sub-
tle issues regarding complex aspects of the PSF-matching
techinque, which become of crucial importance when work-
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Figure 15. UDS I band tfit vs. t-phot comparison. Top panel: compared measured fluxes. Bottom panel: histogram
of relative measured flux difference.

Figure 16. UDS I band tfit vs. t-phot comparison. The panels on the left show two small patches of the “official”
CANDELS residual image obtained using t-fit. The residual images of the same regions are showed in the right pan-
els, this time obtained using t-phot with cells-on-objects method and improved local kernel registration. Note the
disappearence of many spurious black spots.

ing on real data. A simple foretaste of such complexity can
be obtained considering the problem described in Sect. 3,
i.e. the correct amplitude to be assigned to the segmented
area of a source. Work is ongoing on this, and the full dis-
cussion will be presented in a subsequent companion paper.

As we have shown, t-phot proves to be an efficient
tool for the photometric measurements of images on a very

broad range of wavelengths, from UV to sub-mm, and is
currently being routinely used by the Astrodeep commu-
nity to analyse data from different surveys (e.g. CANDELS,
Frontier Fields, AEGIS). Its main advantages with respect
to similar codes like tfit or convphot can be summarized
as follows:
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``````````Size[pix]
maglim,det 27 28 29

Number of sources
2500 × 2500 523 1070 1398
5000 × 5000 2104 4237 5561
10000 × 10000 8390 16807 22394
20000 × 20000 33853 65536 65536

Whole image fitting
2500 × 2500 38” (2”) 54” (10”) 1’9” (20”)
5000 × 5000 3’26” (1’1”) 11’9” (7’41”) 20’28” (16’1”)
10000 × 10000 1h28’22” (1h15’46”) 8h26’1” (7h58’10”) 21h16’24” (20h27’53”)
20000 × 20000 - - -

Cells-on-objects fitting
2500 × 2500 46” (4”) 1’11” (16”) 1’30” (33”)
5000 × 5000 3’1” (18”) 4’27” (1’8”) 6’3” (2’20”)
10000 × 10000 12’27” (1’12”) 17’52” (4’31”) 25’11” (9’52”)
20000 × 20000 51’12” (6’1”) 1h34’40” (35’8”) 1h43’10” (41’2”)

100×100 pixels cells fitting
2500 × 2500 52” (3”) 1’6” (7”) 1’14” (9”)
5000 × 5000 3’16” (14”) 4’22” (29”) 4’54” (41”)
10000 × 10000 13’4” (56”) 17’12” (1’54”) 19’47” (2’53”)
20000 × 20000 55’24” (6’19”) 1h18’38” (15’53”) 1h17’17” (17’58”)

Table 2. Computational times test for t-phot runs on images of given dimensions and limiting magnitude in detection.
Each entry of the table reports the total duration of run, the duration the fitting stage alone between parentheses, and
the number of fitted sources. The dance stage takes most of the CPU time after the fitting routine.

– when used with the same parameter settings of tfit,
t-phot is many times faster (up to hundreds of times);

– t-phot is more robust, more user-friendly, and can han-
dle larger datasets thanks to an appropriate usage of the
RAM;

– t-phot can be used with three different types of priors
(real high-resolution cutouts, analytical models and/or
unresolved point sources) making it a versatile tool for
the analysis of different datasets;

– t-phot offers many options to perform the fit in differ-
ent ways, and with an appropriate choice of parameter
settings it can give more accurate results.

Future applications might include the processing of
EUCLID and CCAT data.
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Obrić, M., Ivezić, Ž., Best, P. N., et al. 2006, MNRAS, 370, 1677
Roseboom, I. G., Oliver, S. J., Kunz, M., et al. 2010, MNRAS, 409,

48
Schreiber, C., Merlin, E., Elbaz, D., et al. 2015
Shu, X., Merlin, E., Elbaz, D., et al. 2015
Stetson, P. B. 1987, PASP, 99, 191
Wang, L., Viero, M., Clarke, C., et al. 2014, MNRAS, 444, 2870
Wang, T., Schreiber, C., Elbaz, D., et al. 2015

Appendix A: The parameter file

Below is a template of the standard first pass parameter file
to be given as input to t-phot (similar templates for both
the first and the second pass are included in the dowload-
able tarball). It is very similar to the original tfit param-
eter file, and part of the description is directly inherited
from it.

A.1. Pipeline

Standard runs can be achieved setting order standard
and order standard2.

A standard firstpass run includes the stages priors,
convolve, fit, diags, dance, plotdance. The stage
priors allows for an automatic re-construction of the
pipeline depending on the input data given in the following
sections (see the documentation included in the tarball).
A standard second pass run includes the stages convolve,
fit, diags, archive. The archive stage creates a direc-
tory after the name of the LRI, with some specifications,
and archives the products of both runs.
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# T-PHOT PARAMETER FILE

# PIPELINE

# 1st pass
order standard
#priors, convolve, fit, diags, dance, plotdance

# PRIORS STAGE

# Choose priors types in use:
usereal True
usemodels True
useunresolved True

# Real 2-d profiles
hiresfile HRI.fits
hirescat HRI.cat
hiresseg HRI.seg.fits
normalize true
subbckg True
savecut true
cutoutdir cutouts
cutoutcat cutouts/_cutouts.cat

# Analytical 2-d models
modelscat models/models.cat
modelsdir models

culling false

# Unresolved point-like sources
poscat pos.cat
psffile psf.fits

# CONVOLUTION STAGE

loresfile LRI.fits
loreserr LRI.rms.fits
errtype rms
rmsconstant 1
relscale 1

FFTconv true
multikernels false
kernelfile kernel.fits
kernellookup ch1_dancecard.txt

templatedir templates
templatecat templates/_templates.cat

# FITTING STAGE

# Filenames:
fitpars tpipe_tphot.param
tphotcat lores_tphot.cat_pass1
tphotcell lores_tphot.cell_pass1
tphotcovar lores_tphot.covar_pass1

A.2. Priors

Each prior must have an unique identificative number (ID)
to avoid errors. The user must be careful to give the cor-
rect information in this paramfile. Select the priors to be
used by switching on/off the relative keywords: usereal,
usemodels, useunresolved.

– hiresfile: the high resolution, detection image. If a
catalog and a segmentation map are given in the two

# Control parameters:
fitting coo
cellmask true
maskfloor 1e-9
writecovar true

threshold 0.0
linsyssolver lu
clip false

# DIAGNOSTICS STAGES

modelfile lores_collage_pass1.fits

# Dance:
dzonesize 100
maxshift 1.0
ddiagfile ddiags.txt
dlogfile dlog.txt
dancefft false

subsequent entries (hirescat and hiresseg), cutouts
will be created out of this image. It is necessary if a
catalog of real or model priors are be used. The cat-
alog hirescat must be in a standard format: id x y
xmin ymin xmax ymax background SEx flux. (x and
y are the coordinates of the source in HRI pixel ref-
erence frame, xmin ymin xmax ymax are the limits of
the segmentation relative to the source in HRI pixel
reference frame, background is the value of the local
background and SEx flux is a reference isophotal flux).

– poscat: a catalog of positions for unresolved, point-like
sources. No HRI image/segmentation are needed, while
the PSF to be used to create the models is mandatory
(psffile). The catalog must be in the standard format
id x y.

– modelscat: a catalog (with format id x y xmin ymin
xmax ymax background SEx flux, as for a standard
HRI priors catalog) of model priors. modelsdir is the
directory in which the stamps of the models are stored.
Models with two or more components can be processed,
but each component must be treated as a separated ob-
ject, with a different ID, and a catalog for each compo-
nent must be given. Catalogs for each component must
have the same name, but ending with ” 1”, ” 2” etc.;
put the ” 1” catalog in the paramfile. Note that two
components of the same object should not have exactly
identical positions, to avoid numerical divergencies.

– culling: if True, objects in the catalog (real priors
and/or models) but not falling into the LRI frame will
not be processed; if it is false, all objects in the catalog
will be processed (useful for storing cutouts for future
reuse on different datasets) and the selection of objects
will be done before the convolution stage.

– subbckg: if True, subtract the value given in the input
catalog from each cutout stamp.

– cutoutdir: the directory containing the cutouts.
– cutoutcat: the catalog of the cutouts, containing the

flux measured within the cutout area (which may be
different from the SEx flux given in the input cata-
log, e.g. if the segmentation has been dilated). Note
that these are output parameters if you start from the
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priors/cutout stage; they are input parameters for the
convolve stage.

– normalize: determines whether the cutouts will be nor-
malized or not; it is normally set to true, so that the final
output catalog will contain fluxes, rather than colors.

A.3. Convolution

– loresfile, loreserr: the LRI and RMS images. t-
phot is designed to work with an RMS map as the
error map, but it will also accept a weight map, or a
single constant value of the RMS from which an RMS
map is generated. The errtype specifies which kind of
error image is provided. For best results, use a source-
weighted RMS map, to prevent the bright objects from
dominating the fit.

– relscale: the relative pixel scale between the two im-
ages. For example if the HRI has a pixel scale of 0.1
arcsec/pixel and the LRI has a pixel scale of 0.5 arc-
sec/pixel, the value of relscale should be 5. If the LRI
has been manipulated to match the HRI pixel scale and
WCS data (e.g. using codes like Swarp by E. Bertin),
put relscale 1.

– kernelfile: the convolution kernel file. The kernel
must be a FITS image on the same pixel scale as the
high res image. It should contain a centered, normalized
image.

– FFTconv is True if the convolution of cutouts with the
smoothing kernel is to be done in Fourier space (via
FFTW3).

– kerntxt may be explicitely put True if one wishes to
use a text file containing the kernel instead of a .fits
one. t-phot supports the use of multiple kernels to ac-
commodate a spatially varying PSF. To use this op-
tion, set the multikernels value to true, and provide a
kernellookup file (it is automatically produced during
the dance stage in the first pass, but it can also be fed
externally) that divides the LRI into rectangular zones,
specified as pixel ranges, and provides a local convolu-
tion kernel filename for each zone. Any objects which
fall in a zone not included in the lookup file will use the
transfer kernel specified as kernelfile.

– templatedir: the directory containing the templates
created in the convolve stage, listed in the catalog tem-
platecat. Note that these are output parameters for the
convolve stage, and an input parameter for all subse-
quent stages.

A.4. Fitting stage

– fitpars, tphotcat, tphotcell, tphotcovar: these
are all output parameters. The tfitpars file specifies
the name of the special parameter file for the fitting
stage that will be generated from the parameters in this
file. The others are filenames for the output catalog, cell,
and covariance files, respectively.

– fitting: this keyword tells t-phot which method to
use to perform the fitting (see also Appendix B):
– coo or 0 for cells-on-objects;
– single or -1 for single fit;
– single! or -10 for optimized single fit (the LRI

is divided in square cells containing roughly 10000
sources each);

– cell xdim, cell ydim, cell overlap for arbi-
trary grid of cells.

– cellmask: if true, uses a mask to exclude pixels
from the fit which do not contain a value of at least
maskfloor in at least one template.

– writecovar: if true, writes the covariance information
out to the tphotcovar file.

– threshold: forces to use a threshold on the flux, to only
use the central parts of the objects.

– linsyssolver: the chosen solution method, i.e. LU,
Cholesky or Iterative Biconjugate Gradient (IBG). LU
is default.

– clip: tells whether to loop on the sources excluding
negative solutions.

A.5. Diagnostic stages

– modelfile: the .fits file that will contain the collage
made by multiplying each template by its best flux and
dropping it into the right place. An additional diag-
nostic file will be created: it will contain the difference
image (LRI - modelfile). Its filename will be created
by prepending resid to the modelfile.

– dzonesize specifies the size of the rectangular zones
over which the pixels cross-correlation between LRI and
modelfile will be calculated during the dance stage. It
should be comparable to the size over which misregis-
tration should be roughly constant; but, it must be large
enough to contain enough objects to provide a good sig-
nal to the cross-correlation.

– maxshift specifies the maximum size of the x,y shift,
in LRI pixel frame, which is considered to be valid. Any
shift larger than this is considered spurious and dropped
from the final results, and replaced by an interpolated
value from the surrounding zones. Ideally, maxshift '
1pixel× FWHMLRI/FWHMHRI .

– ddiagfile is an output parameter for the dance stage,
and an input parameter for the plotdance stage.

– dlogfile is an output parameter; it simply contains the
output from the cross-correlation process.

– danceFFT: if True cross-correlation is to be performed
using FFT techniques rather than in real pixels space.

Appendix B: The cells-on-objects algorithm

Experiments on simulated images (see Sect. 3) clearly show
that fitting small regions (cells) of the LRI, as done by de-
fault in tfit, may lead to potentially large errors. This is
particularly true if the dimensions of the cells are chosen to
be smaller than an ideal size, which changes from case to
case, and should however always be greater than ∼10 times
the FWHM. However, it can be mathematically shown that
the “arbitrary cells” method intrinsecally causes the intro-
duction of errors in the fit, as soon as a source is excluded
from the cell (e.g., because its center is outside the cell) but
contributes with some flux in some of its pixels.

Consider a cell containing N sources. For simplicity,
assume that each source i only overlaps with the two
neighours i − 1 and i + 1. Furthermore, assume that a
(N + 1)-th source is contaminating the N -th source, but
is excluded from the cell for some reason, for example (as
in tfit) because the centroid of the source lies outside the
cell.
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The linear system for this cell AF = B will consist of
a matrix A with only the elements on the diagonal and
those with a ±1 offset as non-zero elements (a symmetric
band matrix), and the vector B will contain the products of
templates of each source with the real flux in the LRI (as a
summation on all pixels), as described in Sect. 2.1.4. Given
the above assumptions, this means that the N -th term of B
will be higher than it should be (because it is contaminated
by the external source).

Using the Cramer rule for the solution of squared linear
systems, the flux for the object i is given by

fi =
detAi

detA
(B.1)

with Ai a square matrix in which the i-th columns is
substituted with the vector B. If for example N = 3, for
i = 1 this gives

f1 = [B1(A22A33 −A2
23)−A12(B2A23 −B3A22)]/ detA

(B.2)
and since B3 is larger than it should, f1 will be overesti-
mated (slightly, if A12 is not large, i.e. if sources 1 and 2
do not strongly overlap). On the other hand, for i = 3 we
have

f3 = [A11(A22B3 −A23B2)−A2
12B3 +B1(A12A23)]/ detA

(B.3)
and in this case again A2

12 might be small, but the first
term given by A11A22 will be certainly large, resulting in
catastrophic overestimation of f3. f2 will of course be un-
derestimated, as it would be easy to show.

From this simple test case it is clear that arbitrarily
dividing the LRI into regions will always introduce errors
(potentially non-negligible) in the fitting procedure, unless
some method to remove dangerous contaminating sources
is devised.

The cells-on-objects algorithm aims at ensuring the ac-
curacy of the flux estimate while at the same time drasti-
cally decreasing computational times and memory require-
ments. As explained in Sect. 2.1.4, when this method is
adopted a cell is centered around each detected source, and
enlarged to include all its “potential” contaminant neigh-
bors, and the contaminant of the contaminants, and so on.
To avoid an infinite loop, the process of inclusion is inter-
rupted when one of the following criteria is satisfied:

– the flux of the new neighbor is lower than a given frac-
tion fflux of the flux of the central object (the consid-
ered fluxes are: if real priors are used, the ones given in
the HRI catalog; if unresolved priors are used, the ones
read in the pixels of the LRI containing the coordinates
of the sources; if analytical models are used, the ones of
the models as reported in the HRI models catalog), or

– the template of the neighbor overlaps with its direct
previous contaminant for a fractional area lower than
farea.

Experiments on simulations have shown that good results
are obtained with fflux = 0.9 and farea = 0.25, and these
values are used as constants in the source code.

Note that if a cell is enlarged to more than 75% of the
dimensions of the total LRI, t-phot automatically switches
to the single fit on the whole image.

Appendix C: Suggested best options

Of course, different problems require different approaches
to obtain their best possible solution, and users are encour-
aged to try different options and settings. However, some
indicative guidelines to optimize a run with t-phot can be
summarized as follows.

– Be sure all the required input files exist, have correct
format, and paths are correctly given in the parameter
file.

– Whenever possible, fit the whole image at once (i.e. put
fitting single in the parameter file). The more the
sources, and the more severe their blending, the more
CPU time will be required (see Sect. 4). If the blend-
ing is not dramatic, it’s safe to switch to the cells-on-
objects method (i.e. put fitting coo in the parameter
file). On the other hand, if blending is severe this option
would result in redundant fittings because cells would
be enlarged to include as many as possible neighbors,
increasing the total computing time. In this case, either
stick to the whole image fitting, or (depending on the
desired degree of accuracy) switch to the tfit-like cells
fitting.

– Spend some time in checking the output catalog, e.g.
considering with caution fits relative to sources having
flags > 0 and covariance indeces larger than 1.
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