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Goal

The ASTRODEEP consortium is committed to process the data resulting from the deepest
surveys of the Universe and to deliver the resulting data products to the worldwide
community.

This document describes the tools that already exist and are used to obtain photometric
catalogs in deep extragalactic fields. In most cases, the procedures described here are
available within the members of the ASTRODEEP consortium, some of them being public tools
(e.g. TFIT or CONVPHOT) and others as recipes developed internally. In the document we also
describe other procedures, not currently used in the ASTRODEEP team, that however are
sufficiently well described and used in the literature and are therefore useful reference for
future developments.

1 Preparation software

Before starting with the real work to obtain photometric catalogs from images, it is necessary
to pre-process them to obtain an initial catalog of the sources to be analysed and to to
subtract background light.

1.1 Image segmentation

One of the preliminary steps to any photometric analysis is the detection of the astrophysical
objects through the so-called “segmentation” process, which consists in separating the pixels
of the image where objects lie from the surrounding “empty” regions where only the sky
background is present. Since the value of each pixel in an astronomical image is determined
by the sum of the background signal and the photons coming from the sources in that region
of the sky, the process of object detection is intimately connected with the
determination/subtraction of the background, which will be described in details in Sect. 1.2.

The public, open-source software SExtractor (Bertin & Arnouts 1996) has become a standard
for the segmentation of images aimed at the analysis of extragalactic sources. Image
segmentation in SExtractor can be schematically described as a sequence of three steps which
are controlled by the user through input parameters:

1.Background estimation (Sect. 1.2).

2.Thresholding. The software individuates groups of pixels touching each other at their
sides or angles (“8-connectivity”) and whose value exceeds a given threshold. The
threshold value is specified by the user in units of the background's standard
deviation (parameter DETECT_THRESH). Only groups exceeding a minimum number
of pixels (defined by the parameter DETECT_MINAREA) are considered as “reliable”
detections. Similarly, the maximum dimension of an object tobe kept in the final
segmentation is specified as DETECT_MAXAREA.

3.Deblending. Connected set of pixels are analysed following a multi-thresholding
approach (Beard et al. 1990). The set is re-thresholded at N levels (parameter
DEBLEND_NTHRESH), exponentially spaced (in the case of CCD images) between the
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extraction threshold and the peak value. Subsets are individuated at any of the N
thresholds and they are considered as separate components if two or more have an
integrated pixel intensity greater than a given fraction (parameter
DEBLEND_MINCONT) of the total intensity of the original object.
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Fig. 1. Science image (left, F160W band from WFC3-HST) and relevant “segmentation map” (right) obtained with SExtractor.

A “segmention map” of the same size of the input image can be saved as output of SExtractor
(Fig. 1). In the segmentation map the original pixels where objects have been individuated
according to the above process are assigned an integer value corresponding to the object
identification number. In turn, object-free regions are set to zero.

1.1.1 Segmentation dilation

Since objects in a scientific image are defined as connected pixels above a given threshold
over the background noise, in the external regions of the sources the noise can be large
enough that the outer regions of the objects are not correctly identified. The area assigned to a
given object in the segmentation map is therefore smaller than the typical extent of the real
objects.

A specific software, DILATE, has been developed at INAF-OAR to enlarge the object area and
recover most of the actual size of the objects. This code was originally designed within the
CONVPHOT package and has recently been revised to analyse the CANDELS data, as described
in Galametz et al. 2013.

In the original approach, sources with an area above a minimum threshold mares were dilated
by a constant factor of 4 (i.e., doubling the radius). Sources smaller than mares were dilated to
reach this minimum threshold.

In the current version a gradual increase of the dilation factor has been introduced:

 [f [ISOAREAF IMAGE > 1000: Dilated area = area

* [f 60 < ISOAREAF IMAGE < 1000:

Dilated area = -0.0004xareaZ + 1.25xarea + 166.

 [f ISOAREAF IMAGE< 60: Dilated area=4xarea.
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1.2 Background subtraction

The proper evaluation of the background is a critical step in all kind of photometric
measurements. In principle, the background could be measured by evaluating the median
intensity of the image in the regions devoid of sources. Unfortunately, the very existence of
areas “devoid” of sources is poorly defined. First of all, areas devoid of detected sources do
contain fainter sources that are not individually detected but that can contribute to an average
background. In addition, as the density of sources increases (i.e. as the depth of the image
increases) and especially when the PSF becomes comparable or even larger than the typical
separation between sources, uncontaminated portions of the image can be very hardly
identified.

For this reason a proper background subtraction is a critical step in any procedure, and at
some level a still unsolved problem in deep photometric analysis. It is important to remark
that the background can be dealt with in a different way in two different steps of the
photometric process: the object detection (since objects are defined above a given threshold
over the background) and in the final estimate of the magnitude.

We describe here two procedures that have been adopted: the first is the standard method
adopted in the SExtractor package, and the second is a specialized technique that has been
adopted to process Spitzer low resolution crowded images.

1.2.1 The SExtractor approach.

This approach is based on the assumption that most discrete sources do not overlap too
severely, which is generally the case for high galactic latitude fields in good seeing conditions.

During the detection process, SExtractor constructs the background map by making a first
pass through the pixel data, computing an estimator for the local background in each mesh of
a grid that covers the whole frame. The background estimator is a combination of ko clipping
and mode estimation, similar to the one employed in DAOPHOT (Stetson 1987). Briefly, the
local background histogram is clipped iteratively until convergence at +3¢ around its median;
if o is changed by less than 20% during that process, the field is considered not crowded, and
the mean of the clipped histogram is taken as a value for the background. Otherwise, the mode
is estimated with:

Mode = 2.5 x Median - 1.5 x Mean

(note that his expression is different from the usual approximation

Mode = 3xMedian-2xMean,

e.g. Kendall and Stuart 1977, but was found to be more accurate with simulations).

SExtractor also allows the user to compute a local background, obtained through an average
(with the above formula) in a rectangular annulus around the object. This additional
procedure makes it possible to compensate for local deviations of the background (including
those due to small-scale background fluctuations or nearby bright objects). This option is also
coded in the CONVPHOT code (see Section 3.1.2).

1.2.2 Background estimation in crowded fields

Background subtraction in very crowded fields is more challenging. It is difficult to mask out
sources and decide how much of the extended wings of their light to treat as background for
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neighbouring sources.

An iterative approach to deal with background subtraction in images for which we have prior
information on source positions in high-resolution images has been developed at STScI to
analyse CANDELS IRAC data.

First pass

The approach begins by applying a standard background-subtraction technique. This
background estimate will be discarded and replaced by a better estimate in the second pass,
so the details are not particularly important. The main goal is to remove large-scale gradients.
The procedure is as follows:

* Identifying and masking bright sources

* Smoothing and subtracting the residual on large scales

* Identifying and subtracting fainter sources

* Smoothing and subtracting the residual on slightly smaller scales.

Second pass

Once this background is subtracted, the sources are fitted using TFIT or similar codes (see
Section 3 below). The sources are subtracted and the pixels associated with the bright parts of
sources are masked. This therefore presents an image that has had the lower-surface-
brightness wings of the sources subtracted. The background in the source-free pixels is then
measured by laying down square apertures of some number of entirely unmasked pixels (9x9
pixels works well for IRAC). A sigma-clipped mean of the pixel fluxes in these apertures is
then estimated and the result is a sparsely-sampled irregular grid of "clean" background
estimates scattered across the image. The background estimate for each pixel is then
computed from this grid using an "N-nearest-neighbor" interpolation scheme (optionally
weighted by a power of the distance to the N-th neighbor). For IRAC, we have found that
inverse-distance weighting using the 19 nearest apertures works well. This approach is
attractive because it is naturally adaptive. Where the density of background estimates is high,
the background estimate is quite local (but still using scales much larger than typical sources),
while it works acceptably well even near the image edges or where the density of background
estimates is low.

2 SExtractor-based Aperture Photometry

Basic photometry of images with different resolution can be performed through an
appropriate use of SExtractor as well as of other codes for aperture photometry (e.g.
DAOPHOT, IRAF digiphot tasks.).

These techniques suffer from major shortcomings which will be discussed below in some
details, but provide a useful reference to the principles of multi-band photometry.

To obtain consistent photometry from two images at different resolution it is necessary to
perform measurements in the same physical region of each source. To this aim, as a first step,
the high resolution image (HRI) must be smoothed with an appropriate kernel to match the
PSF of the low resolution image (LRI). Publicly available PSF-matching codes are e.g. “PSFex”
(Bertin 2011) and IRAF psfmatch task.
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Normally, the process to obtain the kernel is based on a back-and-forward Fourier
transformation technique. Since by definition

PSF, . =PSF,, *K

where * is the convolution operator, the
Convolution Theorem gives

K=FT (FT|PSF,,|/FT|PSF ]!

where FT is the Fourier transform operator. A low passband filter should be applied in the
Fourier domain to suppress high frequency fluctuations and remove the effect of noise, and
the kernel should finally be normalized to unity, in order to preserve the flux of the objects.

Different choices of the measurement area can then be adopted. The choice is driven by
several factors, in particular by image properties (crowding, depth, etc.) and by the
unavoidable compromise between the quest for an high signal to noise (S/N) ratio (achieved
in the central region of each object) and the need of avoiding systematic biases (which
typically require using large apertures). Indeed, while the aperture diameter yielding the
highest S/N can be analytically determined to be ~1.35 Full Width Half Maximum (FWHM) for
point-like Gaussian sources, as far as extragalactic sources are concerned larger apertures can
be preferred, in order to minimize systematic effects due both to uncertainties in astrometry
and PSF-matching and to color-gradients and wavelength-dependent morphologies.

As a consequence, the measurement area is not generally expected to include all the flux in the
LRI and the smoothed-HRI images, and the flux ratio measured from them is simply used as a
“scaling factor” between the unknown total flux in the LRI and the total flux in the HRI, the
latter being previously measured in large circular apertures or in scalable elliptical apertures
(following e.g. Petrosian 1976 or Kron 1980):

FLRI

Ftot.I_RI:F XF o mrr .
LRI, smoothed

While aperture photometry has been often employed in the literature, on PSF-matched
images it suffers from major drawbacks: PSF homogenization degrade photometric quality of
the higher-resolution images, and it yields to pixel-to-pixel noise correlation and to flux
contamination in crowded fields, as extragalactic deep fields usually are. Small size apertures
can give acceptable and stable photometric quality for small/faint isolated objects but yield to
significant biases in the photometry of extended sources having wavelength-dependent
morphology. On the other hand, large apertures are more subject to flux contamination from
neighbouring sources and give sub-optimal measurements in terms of S/N ratio.

2.1 Isophotal magnitudes

As already discussed, the segmentation process (Sect. 1.1) individuates the isophotal area of
each object, i.e. the connected region of the image where pixel values exceeds a defined
threshold with respect to the background.

As a result, a self-consistent flux measurement can in principle be obtained by the integral of
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pixel values within the isophotal area in the smoothed-HRI and in the LRI, with detection of
the object performed in either of the two.

This approach has been previously adopted in the analysis of HST image datasets where small
differences exist between the (nearly) diffraction-limited PSFs at different wavelengths (e.g.
Galametz et al. 2013). As a matter of fact, the isophotal area obtained through image
segmentation has no physical meaning when objects are unresolved, i.e. their size is lower or
comparable to the PSF FWHM. For this reason, this approach is not effective to the analysis of
most datasets where images have widely different PSFs, e.g. when the LRI is a ground-based
optical image severely affected by atmospheric seeing, or mid/far-infrared images from space.
In addition, it is well known that isophotal fluxes suffer from strong flux-dependent biases
being the isophotal area of faint and low surface brightness objects a very poor indicator of
their physical size.

2.2 PSF-matched aperture magnitudes

A simpler but more versatile approach exploits pre-determined circular or elliptical apertures
(Fig. 2).

Fluxes are usually measured in circular apertures chosen to include >70% of the flux from
point-sources (e.g. Castellano et al. 2010, McLure et al. 2013). Depending on image crowding
and on astrometric and PSF-matching accuracy flux ratios can also be measured in small
scalable elliptical apertures (e.g. Bouwens et al. 2011).

oo @ (@ ®
Fig. 2. Example of photometry on PSF-matched images, from left to right: a) original high resolution image (F160W band,
WEFC3-HST), b) ground-based low resolution image (B band, SUBARU-Suprime Cam), c¢) HRI smoothed to the LRI PSF. Flux
can be consistently measured in b) and c) within the circular and elliptical regions superimposed on the images.
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3 PSF-matched photometry using priors

This method is essential to compare and combine observations from different wavelength
domains, obtained using both space-based and ground-based imaging instruments with very
different sensitivities, pixel scales, angular resolutions, and survey depths (e.g., Agiieros et al.
2005; Obric¢ et al. 2006; Wilson et al. 2007). As pointed out in the previous Section, aperture
photometry in a low-resolution image at positions measured in a corresponding higher
resolution image is frequently biased by neighbour contamination for reasonably sized
apertures. On the other hand, performing source extraction on both images and matching the
resulting catalogs is compromised by the inability to deblend neighbouring objects. PSF-
matching techniques that degrade high-resolution data to match the lowest resolution data
discard much of the valuable information obtained with observatories like HST, reducing all
images to the “lowest common denominator” of angular resolution. Finally, crowded-field,
PSF-fitting photometry packages such as DAOPHOT perform well if the sources in the low-
resolution images are unresolved but are unsuitable for analysis of even marginally resolved
images of extragalactic sources.

Therefore, it is of great advantage to use the a priori knowledge of the existence, positions and
morphologies of sources in a deep HRI (“priors”)to improve photometric measurements of
objects in a corresponding LRI of the same field. Given the HRI and LRI of the same galaxy, the
spatial distribution of the light from the HRI can be used to constrain the photometric
measurement of the LRI. This can be achieved either using real object profiles or using
idealized models of the objects fitted to the sources; each of the two approaches has pros and
cons (see below for further description and discussion on this issue).

Like in the aperture photometry approach (Sect. 2), a convolution kernel selected to match
the PSF of the HRI with the PSF of the LRI is required, but this time to singularly convolve
each prior at once.

Then, using a catalog of the HRI sources and their WCS information to locate them with
respect to the LRI, a linear system can be created:

I=B+F,P+.+F, P,

obj ’

where [ contains the pixel values of the flux in the LRI, Pi are the convolved models
(“templates”) for the Nobj objects in the (region of the) LRI being fitted (their fluxes having
been normalized to 1), Fi are the multiplicative scaling factors for each object, and B is an
additive constant. In physical terms, Fi represent the fluxes of each object in the LRI, and B
allows for a possible background component in the image.

Once the templates for each object in the (region of the) LRI have been generated, the best fit
to their fluxes can therefore be derived by minimizing a x? statistic,

Zm nI(mJn)_B,'_M(m’n) ’

o(m,n)

2__
x =l
where m and n are the pixel indexes,

M(m,n):Z:VjFiPi(m,n)'
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and s is the RMS value in the pixel.
The output quantities are the best-fit solutions of the minimization procedure, i.e. the Fi
parameters and their relative errors. They can be obtained resolving the linear system

X’ _
aé,IO(lzl,---,Nobf').

Since the Pi model for each object is normalized to unit flux, the resulting total magnitude of
the i-th object in the LRI is simply

—2.510g(F )+ ZP

where ZPiri is the zero-point of the measure image. It has been shown that this total
magnitude is a reliable measure of the actual total flux of the objects, somewhat less prone to
systematic effects than e.g. the Kron magnitudes computed by SExtractor (Laidler 2007).

Although in practical cases the number of free parameters (i.e., objects) can be quite large, the
linear system to be resolved is very sparse, since non null off-diagonal terms represent only
the rare overlapping/blended sources, and the minimization can be performed in a quite
efficient way by using standard numerical techniques.

Note that this method may assign non-physical negative fluxes in some particular cases, in
order to optimize the fit (this occurs for low-confidence detections in the LRI, or for objects in
the vicinity of a bright, poorly modeled object; this most likely occurs when the PSF transfer
kernel is not accurately determined, or possibly when there are real, intrinsic morphological
differences in the galaxy between the wavelengths of the HRI and LRI). Such negative fluxes
might be removed in a post-processing phase.

Formal errors are usually assigned to the computed fluxes by taking the square root of the
variance of the fitted parameters Fi, which serves as the uncertainties in the flux.

As already pointed out in Sect. 2, the magnitudes obtained this way can hardly be compared
with the SExtractor magnitudes of the HRI image, so that reliable colors cannot be directly
obtained. A robust color estimation should be carried out on a same area of each object and
possibly be extended on a large region of the sources, in order not to be biased by red nuclei
or by strong color gradients. At this purpose, as discussed above, the fluxes Fi should be
compared with the fluxes determined by the same method on the HRI.

The whole method relies on the following assumptions:

1. The HRI, used to detect objects, isolate their area and to obtain models of the sources,
should be deep enough to allow all the sources in the LRI to be detected. Ideally, such
image should be well sampled and allow a proper resolution for most sources.

2. The PSF must be accurately estimated in both images, and a convolution kernel must
be obtained to smooth the HRI to the PSF of the LRI. This is a key issue which deserves
particular attention, since even small inaccuracies in the definition of a PSF or in the
derivation of the kernel may end up in large errors in photometry.

3. The objects are considered to have no measurable proper motion.

4. Morphology and positions of the objects should not change significantly between the
two bandwidths (HRI and LRI). This is obviously not always the case, and may lead to
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significant errors. This is particularly true for far-IR images obtained with Herschel.

5. Finally, the objects should be well separated in the HRI, although they may of course be
blended in the LRI

a
obj1 obj2
4 /
b / \ / \\
/ \/ \
/ A \
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Fig. 3. A schematic representation of the PSF-matching algorithm. (a) Two objects are clearly detected and separated in the
HRI (blue, solid-thin line). The same two objects are blended in the LRI (red, solid-thick line) and have quite different colours.
(b) The two objects are isolated in the HRI and are individually smoothed to the PSF of the LRI, to obtain the “model” images.

(c) The intensity of each object is scaled to match the global profile of the measure image. (from De Santis et al., 2006)

There are two alternative methods to obtain priors for the positions and morphologies of the
objects in the HRI. The first possibility is to use the real images of sources, directly cut from
the HRI, and straightforwardly smooth them down to the resolution of the LRI. The second
one is to obtain analytical models of sources.

3.1 Tools based on real profiles

This approach has the advantage of not relying on any a priori assumption on the features of
the sources, but requires a detailed preparation of the images (e.g., they should be reduced to
the same pixel scale before processing them).

Beginning with the catalog of (x,y) positions, local backgrounds, and isophotal fluxes, along
with a segmentation map that have been obtained by processing the HR], a library of “cutouts”
is constructed, each a subset of the HRI containing a single object. Pixels outside the
segmentation map for each object are set to zero flux. The background can be subtracted from
each of these cutouts, and, for convenience, each cutout can be also normalized to unit flux.

These “real” priors are then convolved to the spatial resolution of the LRI, using the
previously obtained kernel. It is assumed that these model template images are “truth” images
for the objects in the low resolution frame.

There are three available software that follow these guidelines, namely TFIT, CONVPHOT and
the McLure et al. code.
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Fig. 4. This figure shows (clockwise from top left) HST ACS z850 data (the HRI), SSC IRAC 3.6 um data (the LRI), a model image
(areconstruction of the LRI constructed by creating a collage of the object templates, scaled by the flux measurement for each
object) and the residual image (constructed by subtracting the model image from the actual LRI). Inspection of the residual
image can reveal objects that had no counterpart in the high-resolution image, as well as any problems with misregistration
or the transfer kernel. All images are displayed at the same scale. Imperfections in the residual image are due to inaccuracies
in the shape of the Spitzer IRAC PSF. (from Laidler et al. 2007)

3.1.1. TFIT
TFIT (Laidler et al. 2007) was initially conceived and written by C. Papovich in 1999 as a C++
code.

In its latest version, TFIT consists of a Python envelop performing the entirety of tasks, except
for the fitting core routine, which is based on the original C++ routines. It requires the pre-
installation of the following software: Python (and some of its standard modules/interfaces,
such as numpy, scipy, matplotlib, anfft, pyraf); CFITSIO libraries; STSCI; IRAF; STSDAS; FFTW3.

The HRI and the LRI must be aligned and their pixel scales must be the same or have integer
ratio (these requirements can be accomplished for example using SWARP, Bertin et al. 2002,
and/or the IRAF tasks CCMAP and SREGISTER).

TFIT can subtract a constant background (given in the input catalog), but it is instead
recommended to perform a detailed background subtraction before running TFIT, thus
putting the term B equal to zero in the linear system to be solved.

The preliminary steps (cutting out of priors and their convolution with the kernel) are
performed in “stages”, in which all sources are processed before passing at the following step.
The cutout stage is performed invoking the IRAF task imcopy, via pyraf call. The convolution
stage is performed using a Fast Fourier Transform routine (FFTW3), invoked via the anfft
Python module (in TFIT original release, the convolution was instead performed via straight
pixel-by-pixel summation). Cutouts and templates are stored as FITS files, generally requiring
quite a large amount of memory.
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Fig. 5. Comparison between the SExtractor isophotal flux (FI; top) and the SExtractor Kronlike flux (FK; bottom) from the
high-resolution image vs. the flux derived by TFIT from the low-resolution images for 1300 sources in a simulated images.
(a) Flux difference, (FLRI X FI) /FI, vs. isophotal flux from the high-resolution image. The sources have been binned in
intervals of quarter magnitudes, and the error bars indicate the standard deviation for the sources in that bin. For this
simulation, the standard error in the mean is one-tenth the standard deviation. (b) Same as (a), except TFIT fluxes are
compared to the Kronlike fluxes of SExtractor.

In TFIT the linear system is not built on the LRI as a whole at once. Rather, the LRI is divided
into an arbitrary grid of “cells”, and a linear system is built and solved for each of these cells.
The typical dimension of a cell should be more than say 30 times the LRI FWHM (a wrong
choice of the cell dimension may lead to catastrophic errors); the grid is constructed in such a
way that cells overlap, and each cell is then expanded once to completely contain the sources
which partly fell into its original dimensions. Moreover, a second fitting run is performed
using a shifted (dithered) grid. In this way, each source is fitted more than once (usually at
least 4 times for a standard choice of the dimensions of cells). At the end of the fitting
procedure, the “best choice” for each source is selected picking the fit obtained within the cell
in which the object is at the minimal distance from the geometrical center.

This method strongly reduces the computational time, because the solution of a very large
sparse linear system is usually computationally far more expensive than the solution of a
large number of small ones. On the other hand, it introduces some degrees of arbitrariness in
the procedure, which may lead to systematic inaccuracies in the determination of the fluxes.
Further analysis is being performed on the issue.

The linear system solution is performed by the C++ core code, via LU decomposition of the
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matrix (in the TFIT original version, the Singular Value Decomposition method was adopted
instead). No constraint is imposed on the fitting constants, so negative fluxes can be found and
kept as “right” solutions.

Diagnostics and error estimates are also computed during this stage, and outputted both
numerically and graphically (i.e., covariance matrix - whose diagonal consists of the squares of
the errors to be assigned to each source - and residual images).

After the first fitting procedure is completed, a “collage model image” is constructed using the
templates, each multiplied by its fitting constant. Then, each region of the LRI is cross-
correlated with the corresponding region of this collage image, and the resulting “best fitting
shifts” in x and y are found. Finally, a set of shifted convolution kernels which maximize the
correlation for each region are produced. All of these procedures are performed invoking
IRAF tasks, namely xregister and imlintran.

The stages of convolution and fitting are then repeated from scratch, this time degrading each
HRI cutout using the new “shifted” convolution kernel found for the region of the LRI to which
it belongs. In this way, a higher degree of precision is obtained in the astrometry registration
of each source.

A complete (double) run on a standard astronomical field (say, one Goods-S Hawk-I field)
requires ca. 48 hours on a standard machine, this estimate strongly varying depending on the
number of sources in the HRI catalog falling outside the LRI (these are cut and convolved
anyway, and later excluded from the minimization procedure). This long executing time is
largely due to the slowness of the Python procedures.

TFIT is currently being reviewed and improved, and a new version is expected to be released
in the next months.

3.1.2. CONVPHOT
CONVPHOT (De Santis et al. 2006) is a C code developed at INAF-OAR. Its only pre-
requirement is the CFTISIO library.

CONVPHOT can compute the background for each source, and subtract it on-the-fly. The pixel
scale of the HRI and the LRI must be the same; the pixels offsets between HRI and LRI are
needed as an input.

The preliminary steps (cutout and convolution) are organized as a unique flow for each
source, which is located, extracted, cut and convolved on-the-fly. The convolution is
performed via straight pixel-by-pixel summation. Cutouts, templates, and also segmentations
for each object can be stored as FITS files (requiring a large amount of memory), but the code
may be run without storing images.
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Fig. 6. Example of the processing steps to create the thumbnail of the model profile of a given object. From left to right: (a) the
segmentation of the object (white) is extracted, (b) other objects are masked, (c) the object profile is extracted from the
detection image and the local background is subtracted, (d) the object profile is smoothed to the measure PSF and normalised
to obtain the model profile and (e) the same object is extracted from the measure image subtracting its local background.
(from De Santis et al. 2006)

The minimization procedure is performed on the LRI as a whole at once. This has the obvious
advantage of being fully self-consistent, excluding the introduction of possible arbitrary
biases. On the other hand, if the LRI is large the method is highly demanding both in terms of
RAM memory and of computational time. Indeed, the total computational time is comparable
to the TFIT one, but in CONVPHOT most of the time is spent in the fitting routine, another
source of slowness being the pixel-by-pixel convolution instead of the FFT one.

Outputs include fluxes, errors and diagnostic images, as for TFIT.

CONVPHOT does not include a double-pass procedure with registered kernels. On the other
hand, it allows for the possibility of fitting each source using only the pixels with fluxes above
a relative threshold ti = Pimax * tf, where Pimax is the normalized model profile maximum of the
i-th object, and tr is an input threshold parameter. This should avoid spurious fits caused by
the wings of the PSF.

Moreover, CONVPHOT allows for the iterative exclusion of sources with resulting strong (say,
more than 30) negative flux, ruling them out after a first fitting pass and repeating the whole
procedure without taking them into consideration.

3.1.3. McLure et al. code

McLure et al. (2011) developed a code to analyse the ultra-deep IRAC imaging available in the
Hubble Ultra Deep Field (HUDF), based on using HST H-160 band imaging as prior
information. The basic algorithm is very similar to that employed by TFIT and CONVPHOT. It
is written in Fortran, it allows for FFT convolution of high resolution cutouts, and it uses a
standard Gauss-Jordan elimination routine to solve the linear system. The images are fitted as
a whole without cells subdivision.
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Fig. 7 - lllustration of the IRAC deconfusion algorithm developed by McLure et al. (2011). The left-hand panel shows the
inverse-variance weighted stack of the epoch1+epoch2 4.5 pm imagingcovering the HUDF. The middle panel shows the best-
fitting model of the IRAC data, based on using the H160 WFC3/IR imaging to provide model templates, and a matrix
inversion procedure to determine the best-fitting template amplitude. The right-hand panel shows the model subtracted
image (note that the WFC3/IR imaging does not cover the full area of the HUDF).

3.2 Tools based on parametric fit

The other possible approach to the problem of obtaining reliable priors from the HRI involves
a parametric fit of the detected sources before the convolution to the low resolution. It has
been a common exercise, especially after the advent of CCD cameras, to fit the observed
surface brightness profiles of galaxies by mathematical functions in order to shed light into
the structure of the different galaxy components and their connections. To this end, a
mathematical form

I=I(Py,...,P,,x,y)

is usually adopted, where I is the surface brightness distribution of the galaxy, (Py, ..., Px) are
the parameters which describe it and x,y are the spatial coordinates of the image. So, in
general, the light distribution can be written as

N
I(Pl"“’Pn’X’Y):Zi:O L(P; s Py X, y)

where the indices i account for the N components that pertain to the galaxy. There are a
number of empirically motivated light distribution laws in the literature to be used for the
various galaxy constituents, e.g. the R4 law (De Vaucouleurs 1948) for ellipticals and spiral
bulges, the exponential law (Freeman 1970) for disks, etc. However, the preferred option
nowadays is usually the Sérsic (1968) function

R 1/n
1=l epl-b(R) -1

where [ is the intensity at the effective radius, R is the radial coordinate and a. is this effective
radius along the semimajor axis enclosing half of the flux from the model light profile. The
quantity b, is a function of the radial shape parameter n (the so-called the Sérsic index), which
defines the global curvature in the luminosity profile, and is obtained by solving the
expression I'(Zn) = 2y(2n,b,), where ['(a) and y(a,x) are, respectively, the gamma function and
the incomplete gamma function. The Sérsic law is a generalization of the previously
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mentioned De Vaucouleurs (case n=4) and Freeman (case n=1) profiles. It is also noteworthy
that, by fitting several Sérsic profiles at the same time, it is possible to obtain bulge-disk
decompositions or more elaborated luminosity profiles. To define unambiguously a Sérsic
function in two dimensions, we need also to supplement the axis ratio - ratio of the semi-
minor over the semi-major axis - and position angle of the galaxy.

Using parametric fits as priors has the following advantages:

* in principle, the only limitations of this procedure are the ones given by the galaxy flux
and the sky noise. In fact, low S/N sources are better modeled using these methods as
the importance of noise in their light surface brightness profiles is inherently reduced;

e itis possible to take into account the light contamination by galactic neighbours, which
minimizes the impact of crowding;

* the knowledge of the galaxy profiles can be extrapolated to distances that are hidden
underneath the sky noise;

* by having the description of the galaxy light, one can always “play” with these infinite
resolution models, convolving them with her favourite choice of PSFs, pixel scales
and/or any other observational conditions.

On the other hand, it must be kept in mind that the method relies on the assumption that the
galaxy light can be described by a given analytical function (or some combination of
functions), which may not be the case, as these functions might be inaccurate or depart from
the assumed profile at galactocentric radii not proven by the images. Moreover, the analytic
functions are 2D symmetric, and it is well known that real galaxies have asymmetries (fans of
stars, shells, tidal features, ...) which cannot be properly model using this approach.

There exists a plethora of software packages to fit mathematical laws to the galaxies' 2D
luminosity profiles (e.g., GIM2D, Simard 1998, Simard et al. 2002; 2DPHOT, La Barbera et al.
2008; GASPHOT, Pignatelli, Fasano & Cassata 2006; etc.), being GALFIT (Peng et al. 2002,
2010) the most widely utilized. GALFIT convolves Sérsic r’/7 2D models with the PSF of the
images and determines the best fit by comparing the convolved model with the observed
galaxy surface brightness distribution using a Levenberg-Marquardt algorithm to minimise
the x? of the fit. It has a series of auxiliary functionalities such as image masking, customizable
initial conditions and functions, etc. which makes it very attractive to the final user. The
executable program is distributed for free but the source code is not publicly available.

3.2.1 MEGAD (Multi-cpu Edinburgh Galfit-based Algorithm for Deconfusion)

MEGAD (Buitrago et al. 2014, in preparation) is a Multi-CPU IDL-coded tool based on some of
the previously mentioned software packages (IRAF, SExtractor and GALFIT), and it is easily
configurable according to the final user's requirements (it can be fed with any kind of image
or PSF, and it is also possible to change any of the fit parameters, i.e.: functions to be fit,
structural parameters’ initial guesses and ancillary data to improve the results). It does not
consist of a single wrap-up program but a combination of numerical routines. However, it
comes with a series of added-value programs to help the user creating the necessary inputs at
each step of the execution and also for building catalogs storing the output information.

As for the previously described codes, the LRI and the HRI must be aligned and have the same
pixel scales. MEGAD automatically divides the galaxies' analysis into as many directories as
the number of used CPUs. Independent directory trees are also created within these folders in
order to keep track of each individual analysis, in case the user would like to refit/pay more
attention to any interesting object. SExtractor outputs are used as in the previously described
codes to obtain cutouts of all target galaxies. Such cutouts are then fitted using GALFIT, with
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the following conditions:

—

SExtractor output parameters are used as initial guesses;

the value of the sky flux is let free to vary;

3. masks are generated for distant neighbours, but any galaxy object close to the target
galaxy will be analysed at the same time to take into account its light contribution.
Usually an extra mask is built, which only covers the very central object, for improving
the analysis in very crowded fields;

4. several PSFs could be used in order to take into account the spatial variation of this

parameter.

N

From the various output files per object at study (one per given mask and PSF combination)
the best fits are selected as those with the best reduced )2 values, and their structural
parameters are the ones which will move forward in the analysis. As stated, every time
GALFIT is used all its intermediate files are kept in case any object fit is worth a closer
revision.

At this point, catalogs with the best outcomes must be created (in a fixed format) to feed the
next step of the algorithm (software packages to make things easy for the user are available).
In addition, the user is supplied with a program to create a total model image where every
galaxy model is convolved with its best fit PSF. By subtracting it to the original HRI, the user
can check visually how good the fits were.

Finally, MEGAD takes the final master catalog from the previous step and fits the counterparts
of the galaxy stamps in the LRI. This is done freezing all the structural parameters of the 50
detection galaxies in the HRI except their magnitudes. No masks are used now, and a zero sky
is assumed. Again, all these possible configurations might vary, being a typical change at this
stage to allow the galaxy centroids to move * 1 pixel (at the cost of computational time). As it
happened for the HRI, several PSFs are usually taken into account to reflect the variation of
this parameter within our imaging.

As in the previous step, software to produce a final master catalog and a total model and the
associated residual image are provided.

Fig. 8 - Example of how MEGAD works. From left to right, original central part of the ULTRAVISTA K-band image, model and
residuals (all to the same color scale). Small remaining defects are the presence of objects barely above the sky noise or the
couple of minor galaxies outshined by the central star which SExtractor was not able to identify as individual objects.
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Fig. 9 - Same are as in Fig. 4, but this time the MEGAD analysis was done using the SCOSMOS survey 3.6 microns image. From
left to right: original image, model and residuals (all to the same color scale). K-band fits (the previous figure’s models) were
the input for these IRAC analyses. Of course, objects not modeled previously do not appear in the final models.

3.2.2 PyGFIT

PyGFIT (Mancone et al. 2013) differs in a number of steps and in the way they are
implemented from MEGAD, although the underlying philosophy is very similar. To begin with,
it is written in Python and, although it also internally uses SExtractor, it has its own
Levenberg-Marquardt algorithm to conduct the galaxy fits instead of relying on GALFIT for
that.

As an input, PyGFIT needs to receive single Sérsic fits to the HRI, for example using the
aforementioned GALFIT. Then, SExtractor is run over the LRI with a two-folded purpose: first,
to create a segmentation map to determine the blended objects; second, to calculate a
background map to be subtracted to the LRI in order to account for the sky noise. The next
step consists of the alignment between the HRI and LRI, to correct by any offset between this
two. To this end, it finds isolated objects and calculates the offset via a least squares
minimization.
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Fig. 10 - These plots are extracted from the Figure 5 in Mancone et al. (2013). On the top row, they are shown the differences
between the magnitudes of simulated galaxies and the PyGFIT outputs for three photometric bands. On the bottom row, the
magnitude errors are displayed according to the total magnitude. The error bars depict the standard deviations as a function
of aperture magnitude. The solid line corresponds to the limit of Poisson sky noise in the absence of crowding for 4 arcsec
apertures.
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Once this is done, it proceeds to cut square stamps large enough to contain the full
segmentation region of the low resolution source, plus the allowed position shift during the fit
and also adding two extra pixels. Then, it automatically finds the overlapping objects in the
HRI and starts the fit. It is noticeably to state that it starts from the brightest low resolution
source to the faintest. During the fit, all the structural parameters remain fixed, except the
fluxes and the centroids, allowing a + 1 pixel change in its position. After each object is fit, its
model is subtracted from the LRI to remove any contribution to nearby objects.

The final output consist of a master catalog and a residual image.
PyGFIT has a built-in capability to quantify errors by conducting simulations on artificial
galaxies. The authors claim it produces good results, although the uncertainties increase as a
function of neighbour distance and neighbour brightness.

For a more detailed information, please consult the webpage http://www.baryons.org/pygfit .

3.2.3 MegaMorph

MegaMorph (Hdussler et al. 2013, and Vika et al. 2013) is a multi-purpose galaxy fitting
software that, even though not primarily developed for attempting galaxy PSF-matched
photometry, can be used for this task. The program is written in IDL and uses SExtractor and
GALFIT, much as MEGAD does. Nevertheless, GALFIT is modified for specific purposes
(referring as GALFITM to this new version in MegaMorph documentation) and it is utilized by
a wrap-up package called GALAPAGOS (Barden et al. 2012) which manages object deblending,
nearby object contamination, which object should be processed next and other technicalities.
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The concept that distinguish MegaMorph from the other codes based on parametric fits is
that, using the various photometrical bands to obtain information for fitting the lower signal-
to-noise images, it provides the possibility to change the structural parameters with
wavelength, allowing for morphological k-corrections in a controlled manner. For
ASTRODEEP, this approach may be useful for exploring the LRI permitting a change in the
galaxies’ structural parameters.

The core of the MegaMorph algorithm consist of replacing every galaxy model with a
wavelength-dependent function (following the same annotation convention as in the
beginning of this Section 3.2)

N ~ ~
[Py, P)=2 TP Gy 50, Qu ) Pa(A5 Qs Q) x,y);’;’herethé

wavelength, and Pj-tilde are the functions, with m; variables called g;x that describe the
variation of the model parameters. MegaMorph assumes that these parameters change
according to Chebysev polinomials Tk:

Pj()".{qj,k})zz::o q; Tk[Z(A)]'

being z the variable which changes with the wavelength. The reason behind k ranges from 0 to
my resides in the fact that the each parameter may change in a different way: for example, in
the case of the Sérsic function the Pj-tilde parameters would be magnitude, effective radius,
Sérsic index, axis ratio and position angle (j=5, although in reality we need to add the position
of the galaxy’s centroid). One can assume 0-th order of change for the first parameter (so the
magnitude must remain constant among the different bands in this case), a quadratic change
for the effective radius and so forth. The user is allowed to choose which kind of variation is
permitted per parameter, but the authors recommend to use an order one less than the
number of photometric bands utilized.

All the free parameters g;x of the model are then fitted to the multi-band data simultaneously
by minimizing the usual x* equation

[Datau’v’W—Model(PﬂAw;:‘qj,ki),xu,yv

Xz:Zu,v,w ‘ 2 ' '

o

For a more detailed information, please consult the webpage
http://stevenbamford.com/research/projects/megamorph/.
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Fig. 11 - Plots taken from Haussler et al. (2013) Figure 1. From left to right: magnitudes, effective radii (in pixels) and Sérsic
indices for the galaxy GAMA-1373420 (cf. GAMA survey, Driver et al. 2011). MegaMorph outputs are the black stars, while
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green triangules are SExtractor MAG_AUTO results, orange squares are single band fits in Kelvin et al. (2012) and the blue
rhombuses are the authors’ single fits. The solid lines represent the polynomial variation of the structural parameters and the
errors bars come from GALFIT results. It is conspicuous that MegaMorph reduces the multiband scatter on the outputs.

4 PSF-fitting photometry on mid to far infrared images

4.1 “Blind” techniques
STARFINDER

STARFINDER (Diolaiti et al. 2000a,b) is an IDL program for stellar fields analysis. The code
starts detecting a catalog of presumed stars above a pre-fixed threshold in the background-
removed image. Then, the images of the presumed stars are analysed in order of decreasing
luminosity, and a synthetic model image of the observed field is constructed by placing an
intensity- scaled PSF template in the position of each identified star. The PSF template can be
extracted directly from the field, or constructed accurately by means of other methods. The
analysis of a given object includes the following operations (in iteration):

1. re-identification: subtraction of already known stars, to reject spurious detections
associated to PSF features of brighter sources;

2. correlation check, to measure the similarity of the object with the PSF; a correlation
threshold is fixed to distinguish between stellar-like objects and spurious detections
(e.g. noise spikes);

3. fitting: to determine position and flux, taking into account the contribution of
neighbouring brighter stars and of the local background;

4. updating of the stellar field model, which contains a replica of the PSF for each
detected star; it is basically used to keep track of the contribution of bright sources
when analysing fainter ones.

If the extension of a given detected star results to be significantly larger than the PSF area, the
object is assumed to be a blend and de-blending is attempted by iteratively searching for
statistically significant residuals and subsequent fitting. Note that the method relies on the
assumptions of accurate knowledge of the PSF, and the flux errors are artificially small.
STARFINDER has been applied to produce the blind catalogs for the Herschel PEP survey, and
its performance in comparison to the PSF fitting using 24mm priors is presented in PEP-
GOODSH data release. For a more detailed information, please consult the webpages
http://www.mpe.mpg.de/resources/PEP/DR1_tarballs/readme PEP_global.pdf;

http://www.mpe.mpg.de/resources/PEP/DR1 _tarballs/readme PEP_SPIRE.pdf.

GETSOURCES

GETSOURCES (Men’shchikov et al. 2012) is a multi-resolution blind source detection
algorithm developed primarily for large far-infrared surveys of galactic star-forming regions
with Herschel, but which can also be applied to deep extragalactic surveys. GETSOURCES
analyses filtered single-scale decompositions of detection images over a wide range of spatial
scales (separated by only 5% in dimensions) and across all wavelengths, thus linking the
information over a large dataset at various levels of resolution. This is particularly important
for detecting and measuring sources in Herschel images, which have angular resolutions
differing by a factor ~7, the coarsest beam being FWHM~36".
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The procedure is as follows. All images (e.g. at 100, 160, 250, 350 and 500pm) are first

processed to have the same pixel size and the same reference pixel (e.g. using SWARP). Then

each image (at each wavelength) is decomposed in single scale images over a wide range of

spatial scales (of incremental spatial frequency) starting from FWHM/3 of that wavelength.

This decomposition is obtained convolving the original images with circular Gaussians and

subtracting them from one another, starting from the highest resolution (see Fig. 12 for a
schematic illustration):

I,(A)=G,_,*I(A)—-G;*I()(j=1,...,N)

e [(1) is the original image

e [i(1) are the “single-scale” decomposition images

* (jare the smoothing Gaussians with a FWHM; = fs x FWHM;-4, where fs = 1.05, FWHM,
= 2 pixels (e.g. 2x1.2”) and FWHMmax =2 x largest FWHM beam size (e.g. 2x36” for
Herschel).

Each one of the obtained “single scale” images are then cleaned of noise and background by
iterating searches for the appropriate cut-off levels.

Combined single scale images are then produced by summing up the single scale images at
each individual wavelength that have the same resolution.

1,=1p -G < Ig —lo .

Figure 12: A schematic representation of the spatial decomposition in GETSOURCES.

Since shorter wavelengths will have different S/N ratios than larger wavelengths due to the
different beam sizes and flux density of the source as a result of its SED and redshift, the single
scale images are weighted as a function of resolution, in order to give the strongest weight to
the wavelength which FWHM is closest to the scale resolution (see Eq.8 of Men’shchikov et al.
2012). Another normalization is applied to avoid too strong gradients in peak intensities from
one scale to another in the combination of wavelengths (see Eq.6 of Men’shchikov et al. 2012).
This “renormalization” process ensures that signals only detected in high resolution images
are not diluted when combined with much smaller resolution images. Yet, when two
wavelengths are relatively close (such as e.g. the 100 and 160um ones), then the resolutions
are close enough to allow the detection of sources to be enhanced by the combination of
images; e.g. 2.5s sources in both images may become 3s detections, which is a clear
improvement as compared to blind detection techniques that are applied to single
wavelengths (e.g. STARFINDER).

Objects are then identified in the combined detection image at each scale by finding
segmentation maps of the objects, and by tracking their appearance and “evolution” from
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small to large scales. In the combined clean images, the sources begin to appear at some
relatively small scales; their brightest peak is systematically found at the scale that roughly
corresponds to the source size (FWHM); and they eventually vanish at significantly larger
scales.

After individual objects are detected in the combined single scale images as described above,
their properties (sizes and flux densities at each wavelength) are measured on the original
background-subtracted image, where they are deblended with an algorithm that iteratively
divides the intensity of a pixel between surrounding objects according to the two-dimensional
Moffat function.

The end result of the process is a final catalog containing coordinates of all detections and
estimates of the objects’ S/N ratios, peaks, total fluxes (with uncertainties), and sizes and
orientations at each wavelength.

Al ’ Detection in combined single-scales over all A ‘ }\n

<

Scale 1

Tracking source
evolution over
scales

Scale n /A\///\/

Figure 12: schematic illustration of the source detection in GETSOURCES.

Typical computational times are of the order of 2-3 hours from decomposition to
measurement. The algorithm may require considerable storage space, depending on the
numbers of pixels, spatial scales, wavelengths, iterations, and potential sources detected.

4.2 “Prior” techniques

4.2.1 Standard GOODS prior PSF-fitting technique

The basic conceptual approach of this method is similar to the one described in Sect. 3. Given
a prior information about the expected positions of sources, this method aims to solve the
linear system B=AX, where:
* Bisa Npixe vector containing the flux density in each pixel of the scientific image;
* Ais a Npixet X (Nprior+1) matrix;
* X is a Nprior+1 vector, containing the Nprior+1 free parameters of the system, i.e., flux
density of each prior and background level.

The Nprior first columns of A contain the expected flux density of the i-th prior in each pixel of
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the scientific image, given its position and PSF. The last column of A contains the flux density
of an unknown but constant background in each pixel of the scientific image.

Because Npixel > Nprior+1, this system is overdetermined and can be solved using a single value
decomposition (SVD) method, implemented in IDL (namely SVDC and SVSOL modules). This
method is equivalent to a x* minimization method of the ||Ax-B||? system, but assuming a
constant noise level across the scientific image. This assumption of a constant noise level is
suitable for mid- and far-infrared observations, because their coverage maps are very
uniform.

The measure image is divided into cells and a system is constructed and solved for each cell.

For each prior, the method proceeds as follows:

* acutout stamp of (10xFHWM) x (10xFWHM) centered at the prior position is extracted
from the scientific image; this particular size is defined to be large enough to contain
all priors influencing the flux density of the central prior;

* the corresponding B=AX system is solved using the SVD method;

* because the method is not bounded to positive solutions, some priors might result
having unphysical negative flux densities; therefore, they are removed from the system
of equations, and a new system is built and solved again; the procedure is iterated until
all remaining priors have positive flux densities.

Flux densities of all priors within 3xFWHM from the center of the stamp are saved. Outside
this area flux densities are not saved because they might be significantly affected by priors not
situated in the current stamp. To evaluate the quality of our fits, we convolve the residual map
with the PSF. The quality of the fit is then given by the dispersion of pixel values in the
convolved residual map. This estimate is recorded along with the prior flux density estimates.

Following this procedure, each prior can have several flux density estimates, i.e. being the
central prior of a stamp and being a close neighbour (<3xFWHM) in another prior stamp. In
such cases, the flux density of the prior is defined as being the one with the highest quality of
fit.

4.2.2 FASTPHOT

FASTPHOT (Béthermin et al.,, 2010) is a quick and simple PSF fitting routine optimized for
prior extraction. It fits all the detected sources at the same time and is consequently efficient
for deblending.

Assuming that the noise is Gaussian and the position of sources is known, FASTPHOT
determines the flux of each source by maximizing the likelihood:

Nsources 2
(m=> """ PSF,  Xs—p)
L(m|s)=]] 1 —— 24 ]

where m and s are the map and the noise map, PSFxiy: is a unit-flux PSF centered at the
position (xi, yi), m is a constant background, C is a normalization constant which depends only
of the value of the noise map, and s is a vector containing the flux of the sources.

CXexp|—
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The linear equation
dlog(L(mls))
0s;

=0

is equivalent to the standard (Nsources + 1)x(Nsources + 1) matrix equation AX=B,

described in Sect. 3.

FASTPHOT allows fitting all the sources in the field simultaneously, but also allows to first cut
the field into several cells and then fit each area separately. It is fast (it can perform
simultaneous PSF fitting photometry of 1000 sources in SPIRE maps in less than 1 second); it
takes into account the noise map which can aid in obtaining more accurate flux densities, and
calculates the covariance matrix, which can be used to measure the quality of fitting.

For a more detailed information, please consult the webpage http://www.ias.u-
psud.fr/irgalaxies .

4.2.3 DESPHOT: DEblended Spire PHOTometry

The issues with deblending sources in heavily confused far-IR/sub-mm images such as those
from BLAST, Herschel and SCUBA-2 are distinct from those encountered at shorter
wavelengths for a number of reasons:
* steep source counts lead to extreme crowding in low-resolution images which are J-
confusion-limited;
* asaresult the background is dominated by unresolved faint sources rather than empty
sky;
* the flux of a given source at these wavelengths is generally uncorrelated with that at
most other wavelengths;
* sources are unresolved at all but the most local redshifts.
However, the last point, although contributing to increase confusion, actually becomes an
advantage when it comes to resolve blends, because it allows to mathematically decompose a
severely confused image into a linear combination of point sources. Given their positions as a
prior, the fluxes of those sources can be computed since their profiles can be assumed to be
identical and defined by the Point Response Function (PRF). In algebraic form, the image is a
vector of pixels given by

d:Zn: Pifi+6
i=1

where Pi is the PRF at the position of source i, fi the total flux of source i, and ¢ the noise. This
approach has been used to measure stacked properties of undetected populations (e.g.
Marsden et al., 2009; Kurczynski & Gawiser, 2010; Bourne et al,, 2012; Viero et al., 2013a), but
these methods are limited by the assumption that a complete catalogue of source positions is
provided as an input. The DESPHOT method, developed by Roseboom et al. (2010, 2012,
2013) (see also Viero et al,, 2013b; Wang et al., 2013), is more flexible and implements a loss-
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minimisation procedure to iterate towards the optimal solution. A prior catalogue is required,
based on positions from (e.g.) MIPS and radio imaging, but this catalogue is not static. The
algorithm only includes sources from the prior which are necessary to optimise the solution,
but can add sources that are absent from the prior if they appear in the residual. Optimisation
is achieved by solving the matrix form of the system equation, i.e.

d=Af+6

in which A contains the contributions from each source to each pixel in the map. The solution
is found using the non-negative, weighted ‘least absolute shrinkage and selection operator’
(LASSO; Tibshirani, 1996; ter Braak et al., 2010), an algorithm which finds the smallest ‘active
set’ of sources which are necessary for a non-negative (i.e. no negative sources) least-squares
fit, discarding unnecessary (‘inactive’) sources altogether. The algorithm begins with all
sources flagged as inactive, and in each iteration chooses to either activate a new source or
increment the flux of an existing one, in order to achieve the maximum possible reduction in
x*. The iteration process is continued until the gradient of the x reaches zero, indicating that
the minimum has been found.

The main steps of the photometry algorithm can be summarized as follows:

* the image is div